Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat viscous heating

The term on the left is heat convection, while the terms on the right of the equation model thermal conductivity, compression heating, viscous heat generation due to Pouseille flow and viscous heat generation due to Couette flow. [Pg.677]

The winter period corresponds, of course, to the moment in the year where the diesel fuel and home-heating oil characteristics are noticeably different. Table 5.18 gives a typical example of tbe recorded differences heating oil appears more dense and viscous than diesel fuel, while its initial and final boiling points are higher. [Pg.233]

Pure hydrogen peroxide is a colourless, viscous liquid, m.p. 272.5 K, density l,4gcm . On heating at atmospheric pressure it decomposes before the boiling point is reached and a sudden increase of temperature may produce explosive decomposition, since the decomposition reaction is strongly exothermic ... [Pg.279]

Pure sulphuric acid is a colourless, viscous and rather heavy liquid (density 1.84 g cm ). On heating, it decomposes near its boiling point, forming sulphur trioxide and a constant boiling (603 K) mixture of water and sulphuric acid containing 98% of the latter. This is concentrated sulphuric acid, which is usually used. Further heating gives complete dissociation into water and sulphur trioxide. [Pg.300]

Carry out this preparation precisely as described for the a-compound, but instead of zinc chloride add 2 5 g. of anhydrous powdered sodium acetate (preparation, p. 116) to the acetic anhydride. When this mixture has been heated on the water-bath for 5 minutes, and the greater part of the acetate has dissolved, add the 5 g. of powdered glucose. After heating for I hour, pour into cold water as before. The viscous oil crystallises more readily than that obtained in the preparation of the a-compound. Filter the solid material at the pump, breaking up any lumps as before, wash thoroughly with water and drain. (Yield of crude product, io o-io 5 g.). Recrystallise from rectified spirit until the pure -pentacetylglucose is obtained as colourless crystals, m.p- 130-131° again two recrystallisations are usually sufficient for this purpose. [Pg.142]

A satisfactory bath suitable for temperatures up to about 250° may be prepared by mixing four parts by weight of 85 per cent, ortho-phosphoric acid and one part by weight of meta-phosphoric acid the mixed components should first be heated slowly to 260° and held at this temperature imtil evolution of steam and vapours has ceased. This bath is liquid at room temperatures. For temperatures up to 340°, a mixture of two parts of 85 per cent, ortho-phosphoric acid and one part of meta-phosphoric acid may be used this is solid (or very viscous) at about 20°. [Pg.59]

Into a 500 ml. three-necked flask, provided with a mechanical stirrer, a gas inlet tube and a reflux condenser, place 57 g. of anhydrous stannous chloride (Section 11,50,11) and 200 ml. of anhydrous ether. Pass in dry hydrogen chloride gas (Section 11,48,1) until the mixture is saturated and separates into two layers the lower viscous layer consists of stannous chloride dissolved in ethereal hydrogen chloride. Set the stirrer in motion and add 19 5 g. of n-amyl cyanide (Sections III,112 and III,113) through the separatory funnel. Separation of the crystalline aldimine hydrochloride commences after a few minutes continue the stirring for 15 minutes. Filter oflF the crystalline solid, suspend it in about 50 ml. of water and heat under reflux until it is completely hydrolysed. Allow to cool and extract with ether dry the ethereal extract with anhydrous magnesium or calcium sulphate and remove the ether slowly (Fig. II, 13, 4, but with the distilling flask replaced by a Claisen flask with fractionating side arm). Finally, distil the residue and collect the n-hexaldehyde at 127-129°. The yield is 19 g. [Pg.324]

If the original ester is a fat or oil and produces an odour of acrolein when heated, it may be a glyceride. Esters of ethylene glycol and of glycol with simple fatty acids are viscous and of high b.p. They are hydrolysed (method I) and the ethyl alcohol distilled ofl. The residue is diluted (a soap may be formed) and acidified with hydrochloric acid (Congo red paper). The acid is filtered or... [Pg.391]

In a wide-mouthed test-tube ( boiling tube ) place 5 g. of phenol, 15 ml. of 40 per cent, formaldehyde solution and 3 ml. of concentrated ammonia solution (sp. gr. 0-88). Warm the mixtme with a small flame until it becomes opaque. Cool, discard the aqueous layer, but retain the viscous material in the tube. Heat the latter in a water bath at 60° for 30 minutes and then heat the pasty mass in an air oven at 75° for 4-6 hours. A hard sohd resin is produced. [Pg.1023]

Place 10 g. of hquid methyl methacrylate in a test-tube, add 10-20 mg. of benzoyl peroxide (Section IV, 196), stopper the test-tube loosely and heat in a boiling water bath. After 20-25 minutes, the hquid suddenly becomes very viscous and soon sets to a hard, colourless mass of the polymer. [Pg.1023]

Hot Plate, Infrared, and Hot Gas Welding. These processes involve external means to heat thermoplastic polymers to a viscous state in... [Pg.344]

Flow Past Bodies. A fluid moving past a surface of a soHd exerts a drag force on the soHd. This force is usually manifested as a drop in pressure in the fluid. Locally, at the surface, the pressure loss stems from the stresses exerted by the fluid on the surface and the equal and opposite stresses exerted by the surface on the fluid. Both shear stresses and normal stresses can contribute their relative importance depends on the shape of the body and the relationship of fluid inertia to the viscous stresses, commonly expressed as a dimensionless number called the Reynolds number (R ), EHp/]1. The character of the flow affects the drag as well as the heat and mass transfer to the surface. Flows around bodies and their associated pressure changes are important. [Pg.89]

Eriedel-Crafts reaction of naphthalene or tetrahydronaphthalene derivatives with those of styrene or alkylbenzenes has been used in the preparation of high viscous fluids for traction drive (195). Similarly, Eriedel-Crafts reaction of tetraline and a-methylstyrene followed by catalytic hydrogenation provided l-(l-decalyl)-2-cyclohexyl propane, which is used as a highly heat resistant fluid (196). [Pg.563]

Fuels ndEfficiency. Natural gas, oil, and electricity are the primary sources of energy propane is used as backup reserve in emergencies. Natural gas is the least expensive and most frequently used fuel, with heat content ranging from 34—45 MJ/nf (900—1200 Btu/ft ) for raw gas and approximately 3 MJ/m (80 Btu/fT) for air-gas mixtures. Fuel oil has heat content between 39—43 MJ/L (139,600—153,000 Btu/U.S. gal). Fuel oil is viscous at low temperature and must be heated before being fed to atomizing burners where it is mixed with air for combustion. [Pg.306]


See other pages where Heat viscous heating is mentioned: [Pg.303]    [Pg.86]    [Pg.129]    [Pg.304]    [Pg.278]    [Pg.722]    [Pg.189]    [Pg.113]    [Pg.141]    [Pg.173]    [Pg.3]    [Pg.91]    [Pg.99]    [Pg.129]    [Pg.161]    [Pg.162]    [Pg.163]    [Pg.235]    [Pg.253]    [Pg.506]    [Pg.678]    [Pg.936]    [Pg.986]    [Pg.1008]    [Pg.1023]    [Pg.19]    [Pg.602]    [Pg.12]    [Pg.163]    [Pg.168]    [Pg.195]    [Pg.284]    [Pg.295]    [Pg.89]    [Pg.284]    [Pg.297]    [Pg.313]    [Pg.345]   
See also in sourсe #XX -- [ Pg.188 ]




SEARCH



Boundary layers viscous heating

Convection in Isothermal Circular Tube with Viscous Heating

Equations of a Viscous, Heat-Conducting Fluid

Fully Developed Heat Transfer—Purely Viscous Fluids

Heat transfer viscous dissipation effects

Heat viscous dissipation

Heating viscous dissipation

Isothermal Parallel Plate Channel Flow without Viscous Heating

Large Parallel Plate Flow without Viscous Heating Uniform Surface Flux

Operating limits heat pipe viscous limit

Qualitative Features of Heat Transfer in Highly Viscous Liquids

Viscous Shear Heating in a Cylindrical or Slit Die

Viscous heat generation

Viscous heating

Viscous limit, heat pipe

Viscous shear heating

© 2024 chempedia.info