Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fully Developed Heat Transfer—Purely Viscous Fluids

Fully Developed Heat Transfer—Purely Viscous Fluids... [Pg.749]

The Nusselt number for power-law fluids for constant wall heat flux reduces to the newto-nian value of 4.36 when n = 1 and to 8.0 when n = 0. Equation 10.47 is applicable to the laminar flow of nonnewtonian fluids, both purely viscous and viscoelastic, for the constant wall heat flux boundary condition for values of xId beyond the thermal entrance region. The laminar heat transfer results for the constant wall temperature boundary condition were also obtained by the separation of variables using the fully developed velocity profile. The values of the Nusselt number for n = 1.0, Vi, and A calculated by Lyche and Bird [40] are 3.66, 3.95, and 4.18, respectively, while the value for n = 0 is 5.80. These values are equally valid for purely viscous and viscoelastic fluids for the constant wall temperature case provided that the thermal conditions are fully established. [Pg.745]

Laminar Flow Although heat-transfer coefficients for laminar flow are considerably smaller than for turbulent flow, it is sometimes necessary to accept lower heat transfer in order to reduce pumping costs. The heat-flow mechanism in purely laminar flow is conduction. The rate of heat flow between the walls of the conduit and the fluid flowing in it can be obtained analytically. But to obtain a solution it is necessary to know or assume the velocity distribution in the conduit. In fully developed laminar flow without heat transfer, the velocity distribution at any cross section has the shape of a parabola. The velocity profile in laminar flow usually becomes fully established much more rapidly than the temperature profile. Heat-transfer equations based on the assumption of a parabolic velocity distribution will therefore not introduce serious errors for viscous fluids flowing in long ducts, if they are modified to account for effects caused by the variation of the viscosity due to the temperature gradient. The equation below can be used to predict heat transfer in laminar flow. [Pg.12]


See other pages where Fully Developed Heat Transfer—Purely Viscous Fluids is mentioned: [Pg.753]   


SEARCH



Fully Developed Heat Transfer

Heat viscous heating

Heating fluid

Purely viscous fluids

Viscous fluids

© 2024 chempedia.info