Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat fermentors

S. cerevisiae is produced by fed-batch processes in which molasses supplemented with sources of nitrogen and phosphoms, such as ammonia, ammonium sulfate, ammonium phosphate, and phosphoric acid, are fed incrementally to meet nutritional requirements of the yeast during growth. Large (150 to 300 m ) total volume aerated fermentors provided with internal coils for cooling water are employed in these processes (5). Substrates and nutrients ate sterilized in a heat exchanger and then fed to a cleaned—sanitized fermentor to minimize contamination problems. [Pg.466]

The Provesteen process, developed by Phillips Petroleum Company, employs a proprietary 25,000-L continuous fermentor for producing Hansenu/a jejunii the sporulating form of C. utilis from glucose or sucrose at high cell concentrations up to 150 g/L. The fermentor is designed to provide optimum oxygen and heat transfer (69,70). [Pg.466]

As described in U.S. Patent 2,916,485 12 liters of a nutrient medium having the following composition is placed in a 30 liter fermentor equipped with stainless steel fittings including sparger, impeller, baffles and sampling lines and the medium is sterilized by heating at 121°C for two hours. [Pg.1167]

Studies show that the production of 1kg dry biomass requires 2.0 kg sugar, 0.7 kg oxygen, 0.1 kg ammonia, with the liberation of 12,300 k Joules heat. A typical continuous fermentation operates at a dilution rate (D) = 0.2 h 1, with sugar concentration of 3% (w/v) in the incoming medium. With a fermentor of 50 m3 capacity and 90% utilisation of carbohydrate [ie 0.3% (w/v) sugar in the outgoing medium] what would be ... [Pg.79]

Another selenium-containing molybdenum hydroxylase that has been isolated from Clostridium barkeri (identical to Eubacterium barkeri) is nicotinic acid hydroxylase (NAH). Clostridium barkeri was isolated initially as a fermentor of nicotinic acid and thus NAH is a key enzyme in the efficient fermentation of nicotinic acid as a source of carbon and energy. NAH contained selenium when purified from cells labeled with Se-selenite. However, this label was lost during denaturing gel electrophoresis and also on heating of the enzyme (Dilworth 1982). Exhaustive analysis of selenium-labeled alkylation products of NAH under various conditions revealed selenium was bound as a labile cofactor (Dilworth 1982), and not as seleno-cysteine. This report was the first to describe a selenium-dependent enzyme that did not contain selenium in the form of selenocysteine. [Pg.166]

In chemical engineering, the terms transfer of heat, mass, and momentum are referred to as the transport phenomena. The heating or cooling of fluids is a case of heat transfer, a good example of mass transfer being the transfer of oxygen from air into the culture media in an aerobic fermentor. When a fluid flows through a conduit, its pressure drops because of friction due to transfer of momentum, as shown later. [Pg.13]

Derive an equation for the temperature-time relationships of a medium in a fermentor during indirect heating by saturated steam (Figure 10.1c). Use the nomenclature given in Table 10.1. [Pg.156]

Most industrial fermentors incorporate heat-transfer surfaces, which include ... [Pg.192]

Details of heat transfer in fermentors are provided in Chapter 5. [Pg.192]

At the start of the batch fermentor operation, the broth must be heated to the fermentation temperature, which is usually in the range of 30-37 °C, by passing steam or warm water through the coil or the outer jacket. [Pg.195]

The rates of heat transfer between the fermentation broth and the heat-transfer fluid (such as steam or cooling water flowing through the external jacket or the coil) can be estimated from the data provided in Chapter 5. For example, the film coefficient of heat transfer to or from the broth contained in a jacketed or coiled stirred-tank fermentor can be estimated using Equation 5.13. In the case of non-Newtonian liquids, the apparent viscosity, as defined by Equation 2.6, should be used. [Pg.195]

A fermentation broth contained in a batch-operated stirred-tank fermentor, 2.4m in inside diameter D, is equipped with a paddle-type stirrer of diameter (L) of 0.8 m that rotates at a speed Af = 4s -. The broth temperature is maintained at 30 °C with cooling water at 15°C, which flows through a stainless steel helical coil that has a 50 mm outside diameter and is 5 mm thick. The maximum rate of heat evolution by biochemical reactions, plus dissipation of mechanical energy input by the stirrer, is 51000 kcal h , although the rate varies with time. The physical properties of the broth at 30 °C were density p = 1000 kg m " , viscosity p = 0.013 Pa s, specific heat Cp = 0.90 kcal kg °C , and thermal conductivity K = 0.49 kcal h m °C = 0.000136 kcals m °C . ... [Pg.196]

If the rate of heat transfer to or from the broth is important, then the heat transfer area per unit volume of broth should be considered. As the surface area and the liquid volume will vary in proportion to the square and cube of the representative length of vessels, respectively, the heat transfer area of jacketed vessels may become insufficient with larger vessels. Thus, the use of internal coils, or perhaps an external heat exchanger, may become necessary with larger fermentors. [Pg.204]

As this trend levels off with larger columns, it is recommended that values estimated for a 60 cm column are used. If heat transfer is a problem, then heat transfer coils within the column, or even an external heat exchanger, may become necessary when operating a large, industrial bubble column-type fermentor. Scale-up of an internal loop airlift-type fermentor can be achieved in the same way as for bubble column-type fermentors for external loop airhfts see Section 7.7. [Pg.205]

Temperature Ihe temperature in a bioreactor is an important parameter in any bioprocess, because all microorganisms and enzymes have an optimal temperature at which they function most efficiently. For example, optimal temperature for cell growth is 37 °C for Escherichia coli and 30 °C for Saccharomyces sp, respectively. Although there are many types of devices for temperature measurements, metal-resistance thermometers or thermistor thermometers are used most often for bioprocess instrumentation. The data of temperature is sufficiently reliable and mainly used for the temperature control of bioreactors and for the estimation of the heat generation in a large-scale aerobic fermentor such as in yeast production or in industrial beer fermentation. [Pg.220]

Suppose the objective is to control the temperature of a bioreactor. The temperature of a bioreactor is measured by instrumentation and compared with a set-point value. Based on the difference between the measured and the set-point temperature, the flow rate of cooling water into a fermentor jacket is increased or decreased by manipulating a control valve of cooling water until the difference between the measured and the set-point temperature becomes zero. By repeating this operation, the temperature of a bioreactor can be kept constant regardless of changes in the outer temperature or from the internal generation of heat. [Pg.224]

Putting these important issues aside, the production of ethanol by batch fermentation is an important example of a batch reactor. The basic regulatory control of a batch ethanol fermentor is not a difficult problem because the heat removal requirements are modest and there is no need for very intense mixing. In this section we develop a very simple dynamic model and present the predicted time trajectories of the important variables such as the concentrations of the cells, ethanol, and glucose. The expert advice of Bjom Tyreus of DuPont is gratefully acknowledged. Sources of models and parameter values are taken from three publications.1 3... [Pg.224]


See other pages where Heat fermentors is mentioned: [Pg.373]    [Pg.373]    [Pg.178]    [Pg.180]    [Pg.180]    [Pg.180]    [Pg.181]    [Pg.466]    [Pg.304]    [Pg.304]    [Pg.389]    [Pg.393]    [Pg.84]    [Pg.289]    [Pg.1576]    [Pg.1576]    [Pg.76]    [Pg.81]    [Pg.458]    [Pg.156]    [Pg.164]    [Pg.192]    [Pg.195]    [Pg.195]    [Pg.84]    [Pg.373]    [Pg.373]    [Pg.289]    [Pg.439]    [Pg.458]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Fermentor

Fermentors

© 2024 chempedia.info