Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat evolution calcium chloride

Place 20 g. of dry powdered benzoic acid in C, add 15 ml. (25 g., i.e., a 30% excess) of thionyl chloride and some fragments of porcelain, and then clamp the apparatus on a boiling water-bath as shown so that no liquid can collect in the side-arm of C. Heat for one hour (with occasional gentle shaking), by which time the evolution of gas will be complete. Cool the flask C, detach the condenser and fit it to the side-arm for distillation, using a 360° thermometer for the neck of C. To the lower end of the condenser fit a small conical flask G (Fig. 67(B)) by a cork carrying also a calcium chloride tube. [Pg.241]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

Dihydroxyacetophenone. Finely powder a mixture of 40 g. of dry hydroquinone diacetate (1) and 87 g. of anhydrous aluminium chloride in a glass mortar and introduce it into a 500 ml. round-bottomed flask, fitted with an air condenser protected by a calcium chloride tube and connected to a gas absorption trap (Fig. II, 8, 1). Immerse the flask in an oil bath and heat slowly so that the temperature reaches 110-120° at the end of about 30 minutes the evolution of hydrogen chloride then hegins. Raise the temperature slowly to 160-165° and maintain this temperature for 3 hours. Remove the flask from the oil bath and allow to cool. Add 280 g. of crushed ice followed by 20 ml. of concentrated hydrochloric acid in order to decompose the excess of aluminium chloride. Filter the resulting solid with suction and wash it with two 80 ml. portions of cold water. Recrystallise the crude product from 200 ml. of 95 per cent, ethanol. The 3 ield of pure 2 5-dihydroxyacetophenone, m.p. 202-203°, is 23 g. [Pg.677]

Place an intimate mixture of 125 g. of powdered, anhydrous zinc chloride and 26-5 g. of acetophenonephenylhydrazone in a tall 500 ml. beaker in an oil bath at 170°. Stir the mixture vigorously by hand. After 3-4 minutes the mass becomes hquid and evolution of white fumes commences. Remove the beaker from the bath and stir the mixture for 5 minutes. Then stir in 100 g. of clean, white sand in order to prevent solidification to a hard mass. Digest the mixture for 12-16 hours on a water bath with 400 ml. of water and 12 ml. of concentrated hydrochloric acid in order to dissolve the zinc chloride. Filter off the sand and the crude 2-phenylindole, and boil the solids with 300 ml. of rectified spirit. Treat the hot mixture with a little decolourising carbon and filter through a pre-heated Buchner funnel wash the residue with 40 ml. of hot rectified spirit. Cool the combined filtrates to room temperature, filter off the 2-phenylindole and wash it three times with 10 ml. portions of cold alcohol. Dry in a vacuum desiccator over anhydrous calcium chloride. The yield of pure 2-phenylindole, m.p. 188-189°, is 16 g. [Pg.852]

Thionyl chloride method. Mix 100 g. of pure p-nitrobenzoic acid and 126 g. (77 ml.) (1) of redistilled thionyl chloride in a 500 ml. round-bottomed flask. Fit the flask with a double surface reflux condenser carrying a calcium chloride (or cottou wool) guard tube and connect the latter to an absorption device e.g., Fig. II, 8, 1. c). Heat the flask on a water bath with occasional shaking for 1 hour or until the evolution of hydrogen chloride and sulphur dioxide ahnost ceases. Allow the reaction mixture to cool, transfer it cautiously to a Claisen flask connected with a water-cooled condenser and a receiver (compare Fig. II, 13, 1). Distil off the excess of thionyl chloride (b.p. 77°) slowly and continue the distillation until the temperature rises rapidly to about 120° this will ensure that all the thionyl chloride is remov. Allow to cool, and distil the residual p-nitrobenzoyl chloride under diminished pressure as detailed in the Phosphorus Pentachloride Method. The resulting p-nitrobenzoyl chloride (a yellow crystalline solid) weighs 107 g. and melts at 72-73°. [Pg.792]


See other pages where Heat evolution calcium chloride is mentioned: [Pg.105]    [Pg.106]    [Pg.176]    [Pg.237]    [Pg.255]    [Pg.273]    [Pg.167]    [Pg.261]    [Pg.514]    [Pg.599]    [Pg.601]    [Pg.606]    [Pg.607]    [Pg.712]    [Pg.730]    [Pg.730]    [Pg.791]    [Pg.792]    [Pg.815]    [Pg.883]    [Pg.978]    [Pg.34]    [Pg.68]    [Pg.140]    [Pg.141]    [Pg.211]    [Pg.214]    [Pg.64]    [Pg.167]    [Pg.261]    [Pg.514]    [Pg.599]    [Pg.601]    [Pg.606]    [Pg.607]    [Pg.712]    [Pg.730]    [Pg.730]    [Pg.791]    [Pg.792]    [Pg.815]    [Pg.883]    [Pg.978]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Calcium chloride

© 2024 chempedia.info