Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heat conduction thermal conductivity

Heatshield thickness and weight requirements are determined using a thermal prediction model based on measured thermophysical properties. The models typically include transient heat conduction, surface ablation, and charring in a heatshield having multiple sublayers such as bond, insulation, and substmcture. These models can then be employed for any specific heating environment to determine material thickness requirements and to identify the lightest heatshield materials. [Pg.2]

As a good first approximation (187), the heat conduction of low density foams through the soHd and gas phases can be expressed as the product of the thermal conductivity of each phase times its volume fraction. Most rigid polymers have thermal conductivities of 0.07-0.28 W/(m-K) and the corresponding conduction through the soHd phase of a 32 kg/m (2 lbs/fT) foam (3 vol %) ranges 0.003-0.009 W/(m-K). In most cellular polymers this value is deterrnined primarily by the density of the foam and the polymer-phase composition. Smaller variations can result from changes in cell stmcture. [Pg.414]

Ultrasonic Spectroscopy. Information on size distribution maybe obtained from the attenuation of sound waves traveling through a particle dispersion. Two distinct approaches are being used to extract particle size data from the attenuation spectmm an empirical approach based on the Bouguer-Lambert-Beerlaw (63) and a more fundamental or first-principle approach (64—66). The first-principle approach implies that no caHbration is required, but certain physical constants of both phases, ie, speed of sound, density, thermal coefficient of expansion, heat capacity, thermal conductivity. [Pg.133]

Compound Molecula r formula Densit T g/mL Mp, °C Micro hardness a Transvers e mpture strength, N/imn Compressio n strength, N/imn Modulus of elasticity, N/imn Heat conductivity, W/(cm-K) Coefficien t of thermal expansion, /3 X 10 Electrical resistivity, //n-cm... [Pg.440]

Thermal Properties. Thermal properties include heat-deflection temperature (HDT), specific heat, continuous use temperature, thermal conductivity, coefficient of thermal expansion, and flammability ratings. Heat-deflection temperature is a measure of the minimum temperature that results in a specified deformation of a plastic beam under loads of 1.82 or 0.46 N/mm (264 or 67 psi, respectively). Eor an unreinforced plastic, this is typically ca 20°C below the glass-transition temperature, T, at which the molecular mobility is altered. Sometimes confused with HDT is the UL Thermal Index, which Underwriters Laboratories estabflshed as a safe continuous operation temperature for apparatus made of plastics (37). Typically, UL temperature indexes are significantly lower than HDTs. Specific heat and thermal conductivity relate to insulating properties. The coefficient of thermal expansion is an important component of mold shrinkage and must be considered when designing composite stmctures. [Pg.264]

Thermal conductivity describes the ease with which conductive heat can flow through a vapor, hquid, or sohd layer of a substance. It is defined as the proportionahty constant in Fourier s law of heat conduction in units of energy length/time area temperature e.g., W/m K. [Pg.411]

Since each ratio is dimensionless, any consistent units may be employed in any ratio. The significance of the symbols is as follows t = temperature of the surroundings tb = initial uniform temperature of the body t = temperature at a given point in the body at the time 0 measured from the start of the heating or coohng operations k = uniform thermal conductivity of the body p = uniform density of the boc c = specific heat of the body hf = coefficient of total heat transfer between the surroundings and the surface of the body expressed as heat transferred per unit time per unit area of the surface per unit difference in temperature between surroundings and surface r = distance, in the direction of heat conduction, from the midpoint or midplane of the body to the point under consideration / = radius of... [Pg.557]

Foam Insulation Since foams are not homogeneous materials, their apparent thermal conductivity is dependent upon the bulk density of tne insulation, the gas used to foam the insulation, and the mean temperature of the insulation. Heat conduction through a foam is determined by convection and radiation within the cells and by conduction in the solid structure. Evacuation of a foam is effective in reducing its thermal conductivity, indicating a partially open cellular structure, but the resulting values are stiU considerably higher than either multilayer or evacuated powder insulations. [Pg.1135]

The hydrogen content, heat of combustion, specific heat, and thermal conductivity data herein were abstracted from Bureau of Standards MisceUaneous Pubhcation 97, Thermal Propei tie.s of Petroleum Products. These data are widely used, although other correlations have appeared, notably that by Linden and Othmer Chem. Eng. 54[4, 5], April and May, 1947). [Pg.2364]

Processes in which solids play a rate-determining role have as their principal kinetic factors the existence of chemical potential gradients, and diffusive mass and heat transfer in materials with rigid structures. The atomic structures of the phases involved in any process and their thermodynamic stabilities have important effects on drese properties, since they result from tire distribution of electrons and ions during tire process. In metallic phases it is the diffusive and thermal capacities of the ion cores which are prevalent, the electrons determining the thermal conduction, whereas it is the ionic charge and the valencies of tire species involved in iron-metallic systems which are important in the diffusive and the electronic behaviour of these solids, especially in the case of variable valency ions, while the ions determine the rate of heat conduction. [Pg.148]

Grady and Asay [49] estimate the actual local heating that may occur in shocked 6061-T6 Al. In the work of Hayes and Grady [50], slip planes are assumed to be separated by the characteristic distance d. Plastic deformation in the shock front is assumed to dissipate heat (per unit area) at a constant rate S.QdJt, where AQ is the dissipative component of internal energy change and is the shock risetime. The local slip-band temperature behind the shock front, 7), is obtained as a solution to the heat conduction equation with y as the thermal diffusivity... [Pg.242]

Treatment of thermal conductivity inside the catalyst can be done similarly to that for pore diffusion. The major difference is that while diffusion can occur in the pore volume only, heat can be conducted in both the fluid and solid phases. For strongly exothermic reactions and catalysts with poor heat conductivity, the internal overheating of the catalyst is a possibility. This can result in an effectiveness factor larger than unity. [Pg.26]

Conduction takes place at a solid, liquid, or vapor boundary through the collisions of molecules, without mass transfer taking place. The process of heat conduction is analogous to that of electrical conduction, and similar concepts and calculation methods apply. The thermal conductivity of matter is a physical property and is its ability to conduct heat. Thermal conduction is a function of both the temperature and the properties of the material. The system is often considered as being homogeneous, and the thermal conductivity is considered constant. Thermal conductivity, A, W m, is defined using Fourier s law. [Pg.103]

The sum includes concentric cylinder layers, such as the layer between the outer and inner diameters of the pipe or a possible thermal insulation layer. For each layer the corresponding heat conductivity Aj is used. The outer heat transfer fac-ror is the sum of the proportions of convection and radiation. Note Very thin pipes or wires should not be insulated. Because the outer diameter of the insulation is smaller than A/a , the resistance is less than that without the insulation.)... [Pg.108]

Consider a small control volume V = SxSySz (Fig. 4.27), where the inner heat generation is Q "(T) (heat production/volume) and the heat conductivity is A(T). The material is assumed to be homogeneous and isotropic, and the internal heat generation and thermal conductivity are functions of temperature. [Pg.110]

A simple case of heat conduction is a plate of finite thickness but infinite in other directions. If the temperature is constant around the plate, the material is assumed to have a constant thermal conductivity. In this case the linear temperature distribution and the heat flow through the plate is easy to determine from Fourier s law (Eq. (4.154)). [Pg.112]

Warme-durchlassigkeit,/. diathermancy heat conductance, -dynamik, /. thermodynamics, -effckt, m. heat effect, -einfluss, m. inftuence of heat heat influx, -einheit, /. heat unit, thermal unit. [Pg.502]

Warme-leiter, m. conductor of heat, -leit-fahigkeit, /. thermal conductivity, heat conductance. -leitung, /. conduction of heat, -leitvermdgen, n., -leitzahl, /. thermal conductivity. [Pg.502]

Figure 10-47. Flow inside tubes for gas and vapors. Physical property factor depends on viscosity, specific heat, and thermal conductivity. (Used by permission Ning Hsing Chen, Chemical Engineering, V. 66, No. 1, 1959. McGraw-Hill, Inc. All rights reserved.)... Figure 10-47. Flow inside tubes for gas and vapors. Physical property factor depends on viscosity, specific heat, and thermal conductivity. (Used by permission Ning Hsing Chen, Chemical Engineering, V. 66, No. 1, 1959. McGraw-Hill, Inc. All rights reserved.)...
The heat transfer coefficient is correlated experimentally with the fluid transport properties (specific heat, viscosity, thermal conductivity and density), fluid velocity and the geometrical relationship between surface and fluid flow. [Pg.346]

The performance of soluble oils is made possible not only by their high specific heat and thermal conductivity but by their low viscosity, which permits good penetration into the very fine clearances around the cutting zone. Consequently, these fluids are used mainly where cooling is the primary requirement. Lubricating properties can be improved by polar additives, which are agents that enhance the oiliness or anti-friction characteristics. Further improvements can be effected by EP (extreme-pressure) additives, which are usually compounds of sulfur or chlorine. [Pg.870]

Example 1.8 A brick wall, 225 mm thick and having a thermal conductivity of 0.60 W/(m K), measures 10 m long by 3 m high, and has a temperature difference between the inside and outside faces of 25 K. What is the rate of heat conduction ... [Pg.6]

The heat conductivity in solids occurs via phonons. This conductivity is ideal in single crystals and is considerably reduced in porous solids, by one to two orders of magnitude. Therefore thermal insulation materials are built up of small particles which should touch each other at only a few points. This effect is of course enhanced by a low density of the material. [Pg.587]


See other pages where Heat conduction thermal conductivity is mentioned: [Pg.277]    [Pg.414]    [Pg.301]    [Pg.407]    [Pg.417]    [Pg.405]    [Pg.345]    [Pg.6]    [Pg.455]    [Pg.470]    [Pg.204]    [Pg.66]    [Pg.89]    [Pg.324]    [Pg.187]    [Pg.342]    [Pg.520]    [Pg.244]    [Pg.459]    [Pg.553]    [Pg.78]    [Pg.219]    [Pg.187]    [Pg.312]    [Pg.439]    [Pg.111]    [Pg.1177]    [Pg.1033]    [Pg.740]    [Pg.73]    [Pg.498]   
See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Conduction heating

Conductive heating

Heat conductance

Heat conduction

Heat conductive

Thermal heating

© 2024 chempedia.info