Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hartree-Fock equations solution

The HF equations are approximate mainly because they treat electron-electron repulsion approximately (other approximations are mentioned in the answer suggested for Chapter 5, Harder Question 1). This repulsion is approximated as resulting from interaction between two charge clouds rather than correctly, as the force between each pair of point-charge electrons. The equations become more exact as one increases the number of determinants representing the wavefunctions (as well as the size of the basis set), but this takes us into post-Hartree-Fock equations. Solutions to the HF equations are exact because the mathematics of the solution method is rigorous successive iterations (the SCF method) approach an exact solution (within the limits of the finite basis set) to the equations, i.e. an exact value of the (approximate ) wavefunction l m.. [Pg.641]

This expression is not orbitally dependent. As such, a solution of the Hartree-Fock equation (equation (Al.3.18) is much easier to implement. Although Slater exchange was not rigorously justified for non-unifonn electron gases, it was quite successfiil in replicating the essential features of atomic and molecular systems as detennined by Hartree-Fock calculations. [Pg.95]

It should be noted that the Hartree-Fock equations F ( )i = 8i ([)] possess solutions for the spin-orbitals which appear in F (the so-called occupied spin-orbitals) as well as for orbitals which are not occupied in F (the so-called virtual spin-orbitals). In fact, the F operator is hermitian, so it possesses a complete set of orthonormal eigenfunctions only those which appear in F appear in the coulomb and exchange potentials of the Foek operator. The physical meaning of the occupied and virtual orbitals will be clarified later in this Chapter (Section VITA)... [Pg.461]

While orbitals may be useful for qualitative understanding of some molecules, it is important to remember that they are merely mathematical functions that represent solutions to the Hartree-Fock equations for a given molecule. Other orbitals exist which will produce the same energy and properties and which may look quite different. There is ultimately no physical reality which can be associated with these images. In short, individual orbitals are mathematical not physical constructs. [Pg.113]

The Hartree-Fock equations form a set of pseudo-eigenvalue equations, as the Fock operator depends on all the occupied MOs (via the Coulomb and Exchange operators, eqs. (3.36) and (3.33)). A specific Fock orbital can only be determined if all the other occupied orbitals are known, and iterative methods must therefore be employed for determining the orbitals. A set of functions which is a solution to eq. (3.41) are called Self-Consistent Field (SCF) orbitals. [Pg.63]

One Important aspect of the supercomputer revolution that must be emphasized Is the hope that not only will It allow bigger calculations by existing methods, but also that It will actually stimulate the development of new approaches. A recent example of work along these lines Involves the solution of the Hartree-Fock equations by numerical Integration In momentum space rather than by expansion In a basis set In coordinate space (2.). Such calculations require too many fioatlng point operations and too much memory to be performed In a reasonable way on minicomputers, but once they are begun on supercomputers they open up several new lines of thinking. [Pg.5]

One is purely formal, it concerns the departure from symmetry of an approximate solution of the Schrodinger equation for the electrons (ie within the Bom-Oppenheimer approximation). The most famous case is the symmetry-breaking of the solutions of the Hartree-Fock equations [1-4]. The other symmetry-breaking concerns the appearance of non symmetrical conformations of minimum potential energy. This phenomenon of deviation of the molecular structure from symmetry is so familiar, confirmed by a huge amount of physical evidences, of which chirality (i.e. the existence of optical isomers) was the oldest one, that it is well accepted. However, there are many problems where the Hartree-Fock symmetry breaking of the wave function for a symmetrical nuclear conformation and the deformation of the nuclear skeleton are internally related, obeying the same laws. And it is one purpose of the present review to stress on that internal link. [Pg.103]

In the early sixties, it was shown by Roothaan [ 1 ] and Lowdin [2] that the symmetry adapted solution of the Hartree-Fock equations (i.e. belonging to an irreducible representation of the symmetry group of the Hamiltonian) corresponds to a specific extreme value of the total energy. A basic fact is to know whether this value is associated with the global minimum or a local minimum, maximum or even a saddle point of the energy. Thus, in principle, there may be some symmetry breaking solutions whose energy is lower than that of a symmetry adapted solution. [Pg.189]

Ab initio calculations usually begin with a solution of the Hartree-Fock equations, which assumes the electronic wavefunction can be written as a single determinant of molecular orbitals. The orbitals are described in terms of a basis set of atomic functions and the reliability of the calculation depends on the quality of the basis set being used. Basis sets have been developed over the years to produce reliable results with a minimum of computational cost. For example, double zeta valence basis sets such as 3-21G [15] 4-31G [16] and 6-31G [17] describe each atom in the molecule with a single core Is function and two functions for the valence s and p functions. Such basis sets are commonly used, as there appears to be a cancellation of errors, which fortuitously allows them to predict quite accurate results. [Pg.689]

The presence of the nonlocal exchange potentials in the Hartree-Fock equations greatly complicates their solution and necessitates further approximations. Several of these are discussed in the following subsection. In the evaluation of any calculations, it is important to recognize their common (and imperfect) origin, as well as the seriousness of the particular approximations made in solving the equations. [Pg.531]

Most ab initio quantum chemical molecular orbital calculations involve, in some form, the solution of the Hartree-Fock equations. Following Roothaan (13,14) these equations are usually given in a matrix form that for a closed shell molecule takes the deceivingly simple form ... [Pg.147]

These conditions determine a unique set of molecular orbitals, the canonical molecular orbitals, (CMO s), . Inserting the conditions (25) in the SCF Eqs. (17), one sees that the CMO s are solutions of the canonical Hartree-Fock equations 10)... [Pg.39]

At this point it should be noted that, in addition to the discussed previously, the canonical Hartree-Fock equations (26) have additional solutions with higher eigenvalues e . These are called virtual orbitals, because they are unoccupied in the 2iV-electron ground state SCF wavefunction 0. They are orthogonal to the iV-dimensional orbital space associated with this wavefunction. [Pg.40]

The usual first ah initio approximation to the wave function leads to the Hartree-Fock theory, where V molecular spin orbitals (. with one for each electron. Then, asking the question what is the single determinant solution with the lowest possible energy, we obtain the Hartree-Fock equations and density, ... [Pg.276]

Since the exact solution of the Hartree-Fock equation for molecules also proved to be impossible, numerical methods approximating the solution of the Schrodinger s equation at the HF limit have been developed. For example, in the Roothan-Hall SCF method, each SCF orbital is expressed in terms of a linear combination of fixed orbitals or basis sets ((Pi). These orbitals are fixed in the sense that they are not allowed to vary as the SCF calculation proceeds. From n basis functions, new SCF orbitals are generated by... [Pg.108]

The Hy-CI function used for molecular systems is based on the MO theory, in which molecular orbitals are many-center linear combinations of one-center Cartesian Gaussians. These combinations are the solutions of Hartree-Fock equations. An alternative way is to employ directly in Cl and Hylleraas-CI expansions simple one-center basis functions instead of producing first the molecular orbitals. This is a subject of the valence bond theory (VB). This type of approach, called Hy-CIVB, has been proposed by Cencek et al. (Cencek et.al. 1991). In the full-CI or full-Hy-CI limit (all possible CSF-s generated from the given one-center basis set), MO and VB wave functions become identical each term in a MO-expansion is simply a linear combination of all terms from a VB-expansion. Due to the non-orthogonality of one-center functions the mathematical formalism of the VB theory for many-electron systems is rather cumbersome. However, for two-electron systems this drawback is not important and, moreover, the VB function seems in this case more natural. [Pg.189]

This representation permits analytic calculations, as opposed to fiiUy numerical solutions [47,48] of the Hartree-Fock equation. Variational SCF methods using finite expansions [Eq. (2.14)] yield optimal analytic Hartree-Fock-Roothaan orbitals, and their corresponding eigenvalues, within the subspace spanned by the finite set of basis functions. [Pg.12]

It should be noted that by moving to a matrix problem, one does not remove the need for an iterative solution the F >v matrix elements depend on the Cv,i LCAO-MO coefficients which are, in turn, solutions of the so-called Roothaan matrix Hartree-Fock equations- Zv F >v Cv,i = Zv S v Cvj. One should also note that, just as F (f>j = j (f>j possesses a complete set of eigenfunctions, the matrix Fp,v, whose dimension M is equal to the number of atomic basis orbitals used in the LCAO-MO expansion, has M eigenvalues j and M eigenvectors whose elements are the Cv>i- Thus, there are occupied and virtual molecular orbitals (mos) each of which is described in the LCAO-MO form with CV)i coefficients obtained via solution of... [Pg.341]

In the Hartree-Fock method, the molecular (or atomic) electronic wave function is approximated by an antisymmetrized product (Slater determinant) of spin-orbitals each spin-orbital is the product of a spatial orbital and a spin function (a or ft). Solution of the Hartree-Fock equations (given below) yields the orbitals that minimize the variational integral. Thus the Hartree-Fock wave function is the best possible electronic wave function in which each electron is assigned to a spatial orbital. For a closed-subshell state of an -electron molecule, minimization... [Pg.286]

Models for the electronic structure of polynuclear systems were also developed. Except for metals, where a free electron model of the valence electrons was used, all methods were based on a description of the electronic structure in terms of atomic orbitals. Direct numerical solutions of the Hartree-Fock equations were not feasible and the Thomas-Fermi density model gave ridiculous results. Instead, two different models were introduced. The valence bond formulation (5) followed closely the concepts of chemical bonds between atoms which predated quantum theory (and even the discovery of the electron). In this formulation certain reasonable "configurations" were constructed by drawing bonds between unpaired electrons on different atoms. A mathematical function formed from a sum of products of atomic orbitals was used to represent each configuration. The energy and electronic structure was then... [Pg.27]

Usually the solutions of any version of the Hartree-Fock equations are presented in numerical form, producing the most accurate wave function of the approximation considered. Many details of their solution may be found in [45], However, in many cases, especially for light atoms or ions, it is very common to have analytical radial orbitals, leading then to analytical expressions for matrix elements of physical operators. Unfortunately, as a rule they are slightly less accurate than numerical ones. [Pg.339]

In this approach, for the main configuration (i = 1), the single-configuration Hartree-Fock equations, whereas for the admixed ones (i 1), the two-configurational equations dealing only with the functions of admixed configuration, must be solved. From the practical point of view, the process of solution of these equations is much easier than that of equations (29.8) and (29.9), without losing too much accuracy in the results. Formulas (29.12) and (29.13) are called the simplified Hartree-Fock-Jucys equations. Pecularities of their solution are discussed in [226]. [Pg.350]

More recently, Caves and Karplus71 have used diagrammatic techniques to investigate Hartree-Fock perturbation theory. They developed a double perturbation expansion in the perturbing field and the difference between the true electron repulsion potential and the Hartree-Fock potential, V. This is compared with a solution of the coupled Hartree-Fock equations. In their interesting analysis they show that the CPHF equations include all terms first order in V and some types of terms up to infinite order. They propose an alternative iteration procedure which sums an additional set of diagrams and thus should give results more accurate than the CPHF scheme. Calculations on Ha and Be confirmed these conclusions. [Pg.91]

In the framework of the A-potential model, combined with the frozen-cage approximation, the problem is solved simply. Namely, HF wavefunctions and energies of the encaged atom, solutions of the extended to encaged atoms Hartree-Fock equations (2), must be substituted into corresponding formulae for the photoionization of an nl subshell of the free atom, Equations (18)-(26), thereby turning them into formulae for the encaged atom (to be marked with superscript " A") rrni(o>) —> a A(co), Pni(fi>) Yni o>) - and 8ni((o) - 8 A(co). This accounts... [Pg.25]

The relative order is based on the solutions of the Hartree-Fock equations for the average of all d3-states (1). [Pg.13]

Solutions to the Hartree-Fock equations are exact solutions to an approximate description because ... [Pg.641]

When the idempotent density operator p is constructed from orbital solutions of the Hartree-Fock equations, (Ti - ) = 0, it satisfies the commutator equation... [Pg.81]

P. O. Bogdanovich, Collection of Programs of Mathematical Software for Atomic Calculations, No. 2 Program for Numerical Solution of Hartree-Fock Equations, Akademiya Nauk Litovskoi SSR, Institut Fiziki, Vilnius, USSR, 1978. [Pg.308]


See other pages where Hartree-Fock equations solution is mentioned: [Pg.74]    [Pg.74]    [Pg.76]    [Pg.179]    [Pg.80]    [Pg.10]    [Pg.298]    [Pg.134]    [Pg.362]    [Pg.685]    [Pg.108]    [Pg.38]    [Pg.90]    [Pg.14]    [Pg.195]    [Pg.7]    [Pg.148]    [Pg.47]    [Pg.61]    [Pg.104]   
See also in sourсe #XX -- [ Pg.23 , Pg.527 ]




SEARCH



Fock equations

Hartree Fock equation

Hartree equation

Hartree-Fock solution

© 2024 chempedia.info