Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hammett equation, and

The Hammett equation and LFER in general added no new concepts to the qualitative picture that had been built up of electronic effects in organic reactions, but they did provide a quantitative measure that had been lacking and that has been found very useful. Here we will describe the further development of ideas concerning the substituent constant. [Pg.324]

Hydroxypyridine 1-oxide is insoluble in chloroform and other suitable solvents, and, although the solid-state infrared spectrum indicates that strong intermolecular hydrogen bonding occurs, no additional structural conclusions could be reached. Jaffe has attempted to deduce the structure of 4-hydroxypyridine 1-oxide using the Hammett equation and molecular orbital calculations. This tautomeric compound reacts with diazomethane to give both the 1- and 4-methoxy derivatives, " and the relation of its structure to other chemical reactions has been discussed by Hayashi. ... [Pg.359]

The following are the particular situations arising in heterocyclic aromatic chemistry which can be, and have been, treated in terms of the Hammett equation and which will be discussed in the following sections. [Pg.215]

The fundamental understanding of the diazonio group in arenediazonium salts, and of its reactivity, electronic structure, and influence on the reactivity of other substituents attached to the arenediazonium system depends mainly on the application of quantitative structure-reactivity relationships to kinetic and equilibrium measurements. These were made with a series of 3- and 4-substituted benzenediazonium salts on the basis of the Hammett equation (Scheme 7-1). We need to discuss the mechanism of addition of a nucleophile to the P-nitrogen atom of an arenediazonium ion, and to answer the question, raised several times in Chapters 5 and 6, why the ratio of (Z)- to ( -additions is so different — from almost 100 1 to 1 100 — depending on the type of nucleophile involved and on the reaction conditions. However, before we do that in Section 7.4, it is necessary to give a short general review of the Hammett equation and to discuss the substituent constants of the diazonio group. [Pg.148]

In our opinion the reliability of the basis of the Hammett equation and of the parameters F, R, R+, and R is now clearly sufficient for practically all physical organic purposes. A compilation of all substituent constants and the four parameters F, R, R +, and R was published by Hansch et al. (1991). In the main table of that paper the constants om and ap as well as the parameters F and R are listed for no less than 530 substituents ... [Pg.150]

Substituent effects as evaluated on the basis of the Hammett equation and its extended forms, are - this has to be emphasized again — empirical results. Nevertheless, it is very soothing to know that theoretical approaches, i. e., calculations of substituent effects using ab initio molecular orbital theory (Topsom, 1976, 1981, 1983 Taft and Topsom, 1987, STO-3G and 4-31G level), give results that are consistent with the experimental data. However, it is not recommended to use only theoretically calculated substituent constants and values for F, R, and other parameters for the interpretation of experimental data. [Pg.150]

Shen (118) suggested a formal analogy between the Hammett equation and the Price-Alfrey equation. Charton and Capato (119) have derived relationships between e and q values and the Hammett equation as follows. [Pg.122]

It is important to note that the fitting according to eq. (1) requires zero intercept behavior i.e., F =. 00 for H (for which Oj = Or =. 00). While we recognize that the data for the unsubstituted (H) member of a set may be as subject to experimental error as any other member, such error is generally relatively small for a set of reliable data. Any constant error from this source will be distributed among all of the substituents in such a manner as to achieve best fit. Any loss in precision of fitting of the set which may result by such a procedure we believe is a small price to pay compared to the violence done by introduction in eq. (I) of a completely variable constant parameter. The latter procedure has been utilized by other authors both in treatments by the simple Hammett equation and by the dual substituent parameter equation. [Pg.512]

In its original form the Hammett equation was appropriate for use with para and meta substituted compounds where the reaction site is separated from the aromatic group by a nonconjugating side chain. Although there have been several extensions and modifications that permit the use of the Hammett equation beyond these limitations, it is not appropriate for use with ortho substituted compounds, since steric effects are likely to be significant with such species. The results obtained using free radical reactions are often poor, and the correlation is more appropriate for use with ionic reactions. For a detailed discussion of the Hammett equation and its extensions, consult the texts by Hammett (37), Amis and Hinton (12), and Johnson (47). [Pg.239]

The proton dissociation constants, of two series of 3,7-bis(arylazo)-2,6-diphenyl-1 //-irnidazo[l,2-7]pyrazoles, in the ground state and the excited state were determined by the spectrophotometric method and utilizing the Forster energy cycle, respectively. These constants were correlated by the Hammett equation and the results of such correlations with spectral data indicated that both series of compounds exist in solution almost exclusively in the l//-bis-(arylazo) tautomeric form A <2002T2875> (Scheme 3). [Pg.136]

The present findings suggest that mechanistic and reaction product variations are not necessarily accompanied by a clear difference in reactivity and the TS structure, and hence experimentally observable quantities, such as relative reactivities (Hammett equation) and kinetic isotope effects (KIEs), which are commonly considered to be useful means to detect a change in reaction mechanism (77,72), may not always be useful. [Pg.386]

A similar system, (CH3)2C=CH X, was studied by Endrysova and Kraus (55) in the gas phase in order to eliminate the possible leveling influence of a solvent. The rate data were separated in the contribution of the rate constant and of the adsorption coefficient, but both parameters showed no influence of the X substituents (series 61). A definitive answer to the problem has been published by Kieboom and van Bekum (59), who measured the hydrogenation rate of substituted 2-phenyl-3-methyl-2-butenes and substituted 3,4-dihydro-1,2-dimethylnaphtalenes on palladium in basic, neutral, and acidic media (series 62 and 63). These compounds enabled them to correlate the rate data by means of the Hammett equation and thus eliminate the troublesome steric effects. Using a series of substituents with large differences in polarity, they found relatively small electronic effects on both the rate constant and adsorption coefficient. [Pg.175]

It was at Columbia that Hammett carried out his research on the physical properties of organic compounds that made him famous. His first accomplishment was his development of a concept now known as the acidity function, a new interpretation of the behavior of acids in concentrated and dilute solutions. He also derived the Hammett equation and Hammett function for organic substances, accomplishments for which he is perhaps best known today. In 1940, he published Uistextbook Physical-Organic Chemistry, which some chemists have called "one of the great textbooks in the history of chemistry."... [Pg.133]

Clearly, the multifarious factors at work on SCS in pyridines as well as other aromatics can be matched by the more complex manifestations of the Hammett equation and its extensions to provide some sort of correlation, but no systematic overall correlation or related theory has emerged as yet. [Pg.121]

Acidity data for 2-substituted pyridinium ions may be correlated using a Hammett equation and am values. Although it is not obvious that am parameters ought to be applied to a reaction series in which a substituent and the reactive site are in an ortho relationship, the correlation clearly shows that inductive effects have an important influence on acidities. [Pg.82]

The use of different kinds of substituent constants complicates the application of the Hammett equation and over 20 different sets of o values have been proposed. A simplification is the representation of substituent constants as linear combinations of two terms, one representing "field" or "inductive" effects and the other resonance effects.6/f... [Pg.309]

The correspondence of the Hammett equation and Eqs. (3) and (5) have been particularly well explored in the consideration of the pKa values (MeCN, 25°) of 5//-dibenzo-l,3-diazepines (l),14 and amidine structures 2 and 3,15 which are generally well correlated by o rather than o+. Relevant figures are shown in Table I, and reveal in particular that close correspondence to a is equivalent to the use of Eq. (3) using a+ and putting p, approximately twice p. ... [Pg.4]


See other pages where Hammett equation, and is mentioned: [Pg.216]    [Pg.494]    [Pg.494]    [Pg.244]    [Pg.481]    [Pg.83]    [Pg.308]    [Pg.3]    [Pg.5]    [Pg.7]    [Pg.9]    [Pg.11]    [Pg.13]    [Pg.15]    [Pg.17]    [Pg.19]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.37]    [Pg.39]    [Pg.41]    [Pg.43]    [Pg.45]    [Pg.47]    [Pg.49]    [Pg.51]    [Pg.53]    [Pg.55]   


SEARCH



Hammett equation

© 2024 chempedia.info