Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hamiltonian relativistic effects

Hess, B. A. Dolg, M. Relativistic Quantum Chemistry with Pseudopotentials and Transformed Hamiltonians, Relativistic Effects in Heavy-Element Chemistry and Physics -, Ed. Hess, B. A. Wiley Chichester, 2002, pp. 89-122. [Pg.100]

In this general definition of the Hamiltonian, relativistic effects are neglected. These effects are normally negligible for the first three rows in the periodic table (i.e. Z < 36), but become important for the fourth and fifth rows, and for transition metals. Other operators such as the ones describing spin-orbit, orbit-orbit, or spin-spin couplings are also neglected because their contributions are, in most cases, rather small. [Pg.32]

In this work, relativistic effects are included in the no-pah or large component only approximation [13]. The total electronic Hamiltonian is H (r R) = H (r R) + H (r R), where H (r R) is the nom-elativistic Coulomb Hamiltonian and R) is a spin-orbit Hamiltonian. The relativistic (nomelativistic) eigenstates, are eigenfunctions of R)(H (r R)). Lower (upper)... [Pg.452]

Unlike semiempirical methods that are formulated to completely neglect the core electrons, ah initio methods must represent all the electrons in some manner. However, for heavy atoms it is desirable to reduce the amount of computation necessary. This is done by replacing the core electrons and their basis functions in the wave function by a potential term in the Hamiltonian. These are called core potentials, elfective core potentials (ECP), or relativistic effective core potentials (RECP). Core potentials must be used along with a valence basis set that was created to accompany them. As well as reducing the computation time, core potentials can include the effects of the relativistic mass defect and spin coupling terms that are significant near the nuclei of heavy atoms. This is often the method of choice for heavy atoms, Rb and up. [Pg.84]

The most common way of including relativistic effects in a calculation is by using relativisticly parameterized effective core potentials (RECP). These core potentials are included in the calculation as an additional term in the Hamiltonian. Core potentials must be used with the valence basis set that was created for use with that particular core potential. Core potentials are created by htting a potential function to the electron density distribution from an accurate relativistic calculation for the atom. A calculation using core potentials does not have any relativistic terms, but the effect of relativity on the core electrons is included. [Pg.262]

In this review, we have mainly studied the correlation energy connected with the standard unrelativistic Hamiltonian (Eq. II.4). This Hamiltonian may, of course, be refined to include relativistic effects, nuclear motion, etc., which leads not only to improvements in the Hartree-Fock scheme, but also to new correlation effects. The relativistic correlation and the correlation connected with the nuclear motion are probably rather small but may one day become significant. [Pg.318]

However, there also exists a third possibility. By using a famous relation due to Dirac, the relativistic effects can be (in a nonunique way) divided into spin-independent and spin-dependent terms. The former are collectively called scalar relativistic effects and the latter are subsumed under the name spin-orbit coupling (SOC). The scalar relativistic effects can be straightforwardly included in the one-electron Hamiltonian operator h. Unless the investigated elements are very heavy, this recovers the major part of the distortion of the orbitals due to relativity. The SOC terms may be treated in a second step by perturbation theory. This is the preferred way of approaching molecular properties and only breaks down in the presence of very heavy elements or near degeneracy of the investigated electronic state. [Pg.148]

We now consider how to eliminate either all relativistic effects or exclusively the spin-orbit interaction from the relativistic Hamiltonian. We start from the Dirac equation in the molecular field... [Pg.391]

We extend the method over all three rows of TMs. No systematic study is available for the heavier atoms, where relativistic effects are more prominent. Here, we use the Douglas-Kroll-Hess (DKH) Hamiltonian [14,15] to account for scalar relativistic effects. No systematic study of spin-orbit coupling has been performed but we show in a few examples how it will affect the results. A new basis set is used in these studies, which has been devised to be used with the DKH Hamiltonian. [Pg.422]

All calculations were carried out with the software MOLCAS-6.0 [16]. Scalar relativistic effects were included using a DKH Hamiltonian [14,15]. Specially designed basis sets of the atomic natural orbital type were used. These basis sets have been optimized with the scalar DKH Hamiltonian. They were generated using the CASSCF/CASPT2 method. The semi-core electrons (ns, np, n — 3,4, 5) were included in the correlation treatment. More details can be found in Refs. [17-19]. The size of the basis sets is presented in Table 1. All atoms have been computed with basis sets including up to g-type function. For the first row TMs we also studied the effect of adding two h-type functions. [Pg.423]

At this point, it is appropriate to present a brief discussion on the origin of the FC operator (d function) in the two-component form (Pauli form) of the molecular relativistic Hamiltonian. Many textbooks adopt the point of view that the FC is a relativistic effect, which must be derived from the Dirac equation [50,51]. In other textbooks or review articles it is stressed that the FC is not a relativistic effect and that it can be derived from classical electrodynamics [52,53] disregarding the origin of the gyromagnetic factor g—2. In some textbooks both derivations are presented [54]. The relativistic derivations suffer from the inherent drawbacks in the Pauli expansion, in particular that the Pauli Hamiltonian can only be used in the context of the first-order perturbation theory. Moreover, the origin of the FC term appears to be different depending on whether one uses the ESC method or FW transformation. [Pg.464]

In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in the GAMESS-UK package. As was shown earlier we can split off a scalar part from the two component ZORA Hamiltonian. In the present work only the one component part is considered. We introduce a separate internal basis to represent the extra matrix elements, needed for the ZORA corrections. This leads to different options for the computation of the Coulomb matrix in this internal basis. The performance of this Hamiltonian and the effect of the different Coulomb matrix alternatives is tested in calculations on the radon en xenon atoms and the AuH molecule. In the atomic cases we compare with numerical Dirac Fock and numerical ZORA methods and with non relativistic and full Dirac basis set calculations. It is shown that ZORA recovers the bulk of the relativistic effect and that ZORA and Dirac Fock perform equally well in medium size basis set calculations. For AuH we have calculated the equilibrium bond length with the non relativistic Hartree Fock and ZORA methods and compare with the Dirac Fock result and the experimental value. Again the ZORA and Dirac Fock errors are of the same order of magnitude. [Pg.251]

Abstract. Investigation of P,T-parity nonconservation (PNC) phenomena is of fundamental importance for physics. Experiments to search for PNC effects have been performed on TIE and YbF molecules and are in progress for PbO and PbF molecules. For interpretation of molecular PNC experiments it is necessary to calculate those needed molecular properties which cannot be measured. In particular, electronic densities in heavy-atom cores are required for interpretation of the measured data in terms of the P,T-odd properties of elementary particles or P,T-odd interactions between them. Reliable calculations of the core properties (PNC effect, hyperfine structure etc., which are described by the operators heavily concentrated in atomic cores or on nuclei) usually require accurate accounting for both relativistic and correlation effects in heavy-atom systems. In this paper, some basic aspects of the experimental search for PNC effects in heavy-atom molecules and the computational methods used in their electronic structure calculations are discussed. The latter include the generalized relativistic effective core potential (GRECP) approach and the methods of nonvariational and variational one-center restoration of correct shapes of four-component spinors in atomic cores after a two-component GRECP calculation of a molecule. Their efficiency is illustrated with calculations of parameters of the effective P,T-odd spin-rotational Hamiltonians in the molecules PbF, HgF, YbF, BaF, TIF, and PbO. [Pg.253]

So far in this book we have only discussed non-relativistic Hamiltonian operators but when atomic or moleoular spectra are considered it is necessary to account for relativistic effects. These lead to additional terms in the Hamiltonian operator which can be related to the following phenomena ... [Pg.276]


See other pages where Hamiltonian relativistic effects is mentioned: [Pg.208]    [Pg.236]    [Pg.686]    [Pg.194]    [Pg.195]    [Pg.153]    [Pg.154]    [Pg.559]    [Pg.6]    [Pg.251]    [Pg.258]    [Pg.202]    [Pg.381]    [Pg.16]    [Pg.370]    [Pg.383]    [Pg.384]    [Pg.396]    [Pg.421]    [Pg.125]    [Pg.139]    [Pg.684]    [Pg.161]    [Pg.162]    [Pg.173]    [Pg.260]    [Pg.161]    [Pg.162]    [Pg.173]    [Pg.260]    [Pg.35]    [Pg.315]    [Pg.199]    [Pg.174]    [Pg.107]    [Pg.179]   
See also in sourсe #XX -- [ Pg.147 ]




SEARCH



Dirac Hamiltonian relativistic effects

Effective Hamiltonian

Effective Hamiltonians

Hamiltonian relativistic

The Hamiltonian and relativistic effective core potentials

© 2024 chempedia.info