Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Halogenation aldehydes and

Haloalkane,. see Alkyl halide Haloform reaction, 854-855 Halogen, inductive effect of, 562 resonance effect of, 563 Halogenation, aldehydes and, 846-848... [Pg.1300]

The possibility of hydrogenating halogenated aldehydes and ketones by means of phytochemical reduction was tested as early as 1913 the successful results in this field clearly demonstrate the importance of this method. Lintner and Ltters found that chloral hydrate can be converted to trichloroethyl alcohol. This transformation takes place so easily that, according to Willstatter and Duisberg, it can be used under favorable experimental conditions as a convenient method for the preparation of the halogenated alcohol. The tribromoethyl alcohol may be prepared in an analogous manner. [Pg.81]

As seen in Table 13.7, oxidation of HCFCs by OH generates a variety of halogenated aldehydes and ketones as well as phosgene (COCl2), its fluorine analog (COF2), C1C(0)F and HC(0)F, and the alcohol CF3OH. The ultimate atmospheric fate of these products depends on their structures, of course, which determines their absorption cross sections as well as reactivity with OH, and their solubility in aqueous solutions such as clouds, rainwater, and the oceans. [Pg.750]

The facile reaction of CAA and BAA with nucleosides and nucleotides is one example of many of the applications of the bifunctional reactivity of halogenated aldehydes and ketones in modification of biomolecules. In an early example of the extensive use of halogenated ketones as protease substrate analogues, l-V-tosylamido-2-phenylethyl chloro-methyl ketone (TPCK) 30 was synthesized as a chymotrypsin substrate analogue. Stoichiometric inhibition was accompanied by loss of one histidine residue as a result of alkylation by the chloromethyl moiety68. A host of similar analogues were subsequently prepared and used as selective enzyme inhibitors, in particular for the identification of amino acid residues located at enzyme active sites69. [Pg.1507]

The halogen acids, of course, bear the same relation to the halogen aldehydes and the halogen alcohols (halogen hydrines) that unsubstituted acids do to the unsubstituled aldehydes and alcohols. That is, they are the direct oxidation products. [Pg.230]

Asymmetric ene Reaction In 1988 Yamamoto and coworkers provided the first indication that asymmetry in ene-reactions could be induced by catalytic amounts of chiral Lewis acids in the presence of 4-A molecular sieves (Scheme 6.64) [88]. They described the first example of asymmetric ene-reaction between prochiral, halogenated aldehydes and alkenes catalyzed by chiral binaphthol-derived aluminum complexes. The hindered 3,3-silyl substituents in the chiral catalyst are essential to achieve good enantioselectivity and high yield. In fact, the use of a catalyst derived from MesAl and 3,3 -biphenylbinaphthol led to the racemic product in a low yield. [Pg.234]

Certain hydroxy or halogenated aldehydes, and also some diketones, react with alkali like monobasic acids, and may be titrated in aqueous or alcoholic solution. In some cases the end-point depends on the indicator... [Pg.159]

AUphatic halogenated aldehydes and ketones. In general these compounds react normally with the usual reagents for the carbonyl group (but see also pages 93,94). [Pg.50]

This section examines a reaction of the carbonyl gronp that can proceed through the intermediacy of either enols or enolate ions—halogenation. Aldehydes and ketones react with halogens at the a-carbon. In contrast with deuteration, which proceeds to completion with either acid or base, the extent of halogenation depends on whether acid or base catalysis has been nsed. [Pg.796]

Like aldehydes ketone functions take precedence over alcohol functions double bonds halogens and alkyl groups m determining the parent name and direction of numbering Aldehydes outrank ketones however and a compound that contains both an aldehyde and a ketone carbonyl group is named as an aldehyde In such cases the carbonyl oxy gen of the ketone is considered an 0x0 substituent on the mam chain... [Pg.705]

Other than nucleophilic addition to the carbonyl group the most important reac tions of aldehydes and ketones involve replacing an a hydrogen A particularly well stud led example is halogenation of aldehydes and ketones... [Pg.756]

Aldehydes and ketones react with halogens by substitution of one of the a hydrogens... [Pg.757]

As m the acid catalyzed halogenation of aldehydes and ketones the reaction rate is mde pendent of the concentration of the halogen chlorination brommation and lodmation all occur at the same rate Formation of the enolate is rate determining and once formed the enolate ion reacts rapidly with the halogen... [Pg.765]

Esterification of carboxylic acids involves nucleophilic addition to the carbonyl group as a key step In this respect the carbonyl group of a carboxylic acid resembles that of an aldehyde or a ketone Do carboxylic acids resemble aldehydes and ketones m other ways Do they for example form enols and can they be halogenated at their a carbon atom via an enol m the way that aldehydes and ketones can ... [Pg.815]

Sulfur tetrafluoride [7783-60-0] SF, replaces halogen in haloalkanes, haloalkenes, and aryl chlorides, but is only effective (even at elevated temperatures) in the presence of a Lewis acid catalyst. The reagent is most often used in the replacement of carbonyl oxygen with fluorine (15,16). Aldehydes and ketones react readily, particularly if no alpha-hydrogen atoms are present (eg, benzal fluoride [455-31-2] from benzaldehyde), but acids, esters, acid chlorides, and anhydrides are very sluggish. However, these reactions can be catalyzed by Lewis acids (HP, BF, etc). [Pg.268]

Simple olefins do not usually add well to ketenes except to ketoketenes and halogenated ketenes. Mild Lewis acids as well as bases often increase the rate of the cyclo addition. The cycloaddition of ketenes to acetylenes yields cyclobutenones. The cycloaddition of ketenes to aldehydes and ketones yields oxetanones. The reaction can also be base-cataly2ed if the reactant contains electron-poor carbonyl bonds. Optically active bases lead to chiral lactones (41—43). The dimerization of the ketene itself is the main competing reaction. This process precludes the parent compound ketene from many [2 + 2] cyclo additions. Intramolecular cycloaddition reactions of ketenes are known and have been reviewed (7). [Pg.474]

PMVEMA, supphed as a white, fluffy powder, is soluble in ketones, esters, pyridine, lactams, and aldehydes, and insoluble in aUphatic, aromatic, or halogenated hydrocarbons, as well as in ethyl ether and nitroparaffins. When the copolymer dissolves in water or alcohols, the anhydride group is cleaved, forming the polymers in free acid form or the half-esters of the corresponding alcohol, respectively. Table 7 illustrates the commercially available alternating copolymers and derivatives. [Pg.518]

Amino Acids. The formation of A/-halo-a-amino acids involves halogenation of the acid anion (13). /V-Cb1oro-CX-amino acids decompose to aldehydes and nitriles, the selectivity depending on pH and stoichiometry (110). For example, AJ-chloroalanine decomposes in the 6.5—10 pH range. [Pg.456]

Examples are given of common operations such as absorption of ammonia to make fertihzers and of carbon dioxide to make soda ash. Also of recoveiy of phosphine from offgases of phosphorous plants recoveiy of HE oxidation, halogenation, and hydrogenation of various organics hydration of olefins to alcohols oxo reaction for higher aldehydes and alcohols ozonolysis of oleic acid absorption of carbon monoxide to make sodium formate alkylation of acetic acid with isobutylene to make teti-h ty acetate, absorption of olefins to make various products HCl and HBr plus higher alcohols to make alkyl hahdes and so on. [Pg.2110]


See other pages where Halogenation aldehydes and is mentioned: [Pg.75]    [Pg.81]    [Pg.1488]    [Pg.1488]    [Pg.1506]    [Pg.1507]    [Pg.155]    [Pg.174]    [Pg.268]    [Pg.75]    [Pg.81]    [Pg.1488]    [Pg.1488]    [Pg.1506]    [Pg.1507]    [Pg.155]    [Pg.174]    [Pg.268]    [Pg.757]    [Pg.757]    [Pg.757]    [Pg.757]    [Pg.473]    [Pg.279]    [Pg.118]    [Pg.223]    [Pg.257]    [Pg.52]    [Pg.37]    [Pg.757]    [Pg.757]    [Pg.757]   
See also in sourсe #XX -- [ Pg.846 , Pg.847 ]

See also in sourсe #XX -- [ Pg.846 , Pg.847 ]

See also in sourсe #XX -- [ Pg.874 , Pg.875 ]




SEARCH



Aldehydes halogenation

Halogen aldehydes

Halogenated aldehydes

© 2024 chempedia.info