Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenolic nitriles, halogenated

Nearly every substitution of the aromatic ring has been tolerated for the cyclization step using thermal conditions, while acid-promoted conditions limited the functionality utilized. Substituents included halogens, esters, nitriles, nitro, thio-ethers, tertiary amines, alkyl, ethers, acetates, ketals, and amides. Primary and secondary amines are not well tolerated and poor yield resulted in the cyclization containing a free phenol. The Gould-Jacobs reaction has been applied to heterocycles attached and fused to the aniline. [Pg.430]

Based on a survey of the published literature, Maarse and Vischer (1989) listed 213 volatile compounds that had been identified in 50 studies on Cheddar these included 33 hydrocarbons, 24 alcohols, 13 aldehydes, 17 ketones, 42 acids, 30 esters, 12 lactones, 18 amines, 7 sulfur compounds, 5 halogens, 6 nitriles and amides, 4 phenols, 1 ether, and 1 pyran. The concentrations of many of these compounds were reported. The principal volatile compounds identified in Cheddar are listed in Table VII. [Pg.238]

By introducing reasonable values (about 2 for nitrogen, 4 for oxygen) for the electron affinity parameter relative to carbon, 8, and for the induced electron affinity for adjacent atoms (32/8i = Vio), we have shown that the calculated permanent charge distributions for pyridine, toluene, phenyltrimethylammonium ion, nitrobenzene, benzoic acid, benzaldehyde, acetophenone, benzo-nitrile, furan, thiophene, pyrrole, aniline, and phenol can be satisfactorily correlated qualitatively with the observed positions and rates of substitution. For naphthalene and the halogen benzenes this calculation does not lead to results... [Pg.201]

Apart from complex formation involving metal ions (as discussed in Chapter 4), crown ethers have been shown to associate with a variety of both charged and uncharged guest molecules. Typical guests include ammonium salts, the guanidinium ion, diazonium salts, water, alcohols, amines, molecular halogens, substituted hydrazines, p-toluene sulfonic acid, phenols, thiols and nitriles. [Pg.138]

Solvents can be classified into three categories according to their polarity namely, polar protic, dipolar aprotic and non-polar. Most of the common solvents fall under one of following chemical classes Aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, phenols, ethers, aldehydes, ketones, carboxylic acids, esters, halogen-substituted hydrocarbons, amines, nitriles, nitro-derivatives, amides and sulfur-containing solvents (Marcus, 1998). In certain cases a mixture of two or more solvents would perform better than a single solvent. [Pg.116]

A mammal may emit many volatile compounds. Humans, for instance, give off hundreds of volatiles, many of them chemically identified (Ellin etal., 1974). The volatiles include many classes of compound such as acids (gerbil), ketones, lactones, sulfides (golden hamster), phenolics (beaver, elephant), acetates (mouse), terpenes (elephant), butyrate esters (tamarins), among others. The human samples mentioned before contained hydrocarbons, unsaturated hydrocarbons, alcohols, acids, ketones, aldehydes, esters, nitriles, aromatics, heterocyclics, sulfur compounds, ethers, and halogenated hydrocarbons. Sulfur compounds are found in carnivores, such as foxes, coyotes, or mustelids. The major volatile compound in urine of female coyotes, Canis latrans, is methyl 3-methylhut-3-enyl sulfide, which accounts for at least 50% of all urinary volatiles (Schultz etal, 1988). [Pg.23]

The lower members of the homologous series of 1. Alcohols 2. Aldehydes 3. Ketones 4. Acids 5. Esters 6. Phenols 7. Anhydrides 8. Amines 9. Nitriles 10. Polyhydroxy phenols 1. Polybasic acids and hydro-oxy acids. 2. Glycols, poly-hydric alcohols, polyhydroxy aldehydes and ketones (sugars) 3. Some amides, ammo acids, di-and polyamino compounds, amino alcohols 4. Sulphonic acids 5. Sulphinic acids 6. Salts 1. Acids 2. Phenols 3. Imides 4. Some primary and secondary nitro compounds oximes 5. Mercaptans and thiophenols 6. Sulphonic acids, sulphinic acids, sulphuric acids, and sul-phonamides 7. Some diketones and (3-keto esters 1. Primary amines 2. Secondary aliphatic and aryl-alkyl amines 3. Aliphatic and some aryl-alkyl tertiary amines 4. Hydrazines 1. Unsaturated hydrocarbons 2. Some poly-alkylated aromatic hydrocarbons 3. Alcohols 4. Aldehydes 5. Ketones 6. Esters 7. Anhydrides 8. Ethers and acetals 9. Lactones 10. Acyl halides 1. Saturated aliphatic hydrocarbons Cyclic paraffin hydrocarbons 3. Aromatic hydrocarbons 4. Halogen derivatives of 1, 2 and 3 5. Diaryl ethers 1. Nitro compounds (tertiary) 2. Amides and derivatives of aldehydes and ketones 3. Nitriles 4. Negatively substituted amines 5. Nitroso, azo, hy-drazo, and other intermediate reduction products of nitro com-pounds 6. Sulphones, sul-phonamides of secondary amines, sulphides, sulphates and other Sulphur compounds... [Pg.1052]

The reacting species is a rather weak electrophile and, therefore, only particularly reactive aromatics are suitable substrates. Consequently, the reaction is restricted for polyhydric phenols and their ethers, and reactive heterocycles. With strong acidic systems, such as AICI3 in halogenated benzene solvents, alkylben-zenes can react at more elevated temperatures (>50°C). Trichloroacetonitrile works also well with nonactivated aromatics. The 12 chloroimine, the protonated nitrile (13), or the nitrile coordinated with the Lewis acid are possible involved electrophiles. [Pg.417]

Organic chemicals that are susceptible to oxidation and are of concern from the perspective of contamination and environmental degradation include aliphatic and aromatic hydrocarbons, alcohols, aldehydes, and ketones phenols, polyphenols, and hydroquinones sulfides (thiols) and sulfoxides nitriles, amines, and diamines nitrogen and sulfur heterocyclic compounds mono- and di-halogenated aliphatics linear alkybenzene-sulfonate and nonylphenol polyethoxylate surfactants and thiophosphate esters. Table... [Pg.410]

From To — Akanes CycJoaikanes Akenes Akynes Aryls Halogen compounds Alcohols Phenols Ethers, Quinones B, 5 and Si compounds P and BI compounds Nttro. Nitroso, Azo. Azoxy, Hydrazo Azides Amines Organometahic compounds Adehydes Ketones Acids. AnHyd rides. Esters Amides, Amidines. Nitriles Hydroxy-aldehydes or -ketones. Sugars. Hydroxy acids Ammo acids. Peptides Heterocycles Nucleosides Miscellaneous, including heterocycles... [Pg.445]


See other pages where Phenolic nitriles, halogenated is mentioned: [Pg.258]    [Pg.258]    [Pg.249]    [Pg.249]    [Pg.28]    [Pg.562]    [Pg.63]    [Pg.108]    [Pg.574]    [Pg.22]    [Pg.32]    [Pg.48]    [Pg.562]    [Pg.562]    [Pg.205]    [Pg.13]    [Pg.134]    [Pg.276]    [Pg.1]    [Pg.12]    [Pg.13]    [Pg.435]    [Pg.451]    [Pg.459]    [Pg.556]    [Pg.658]    [Pg.800]    [Pg.864]    [Pg.887]    [Pg.2]    [Pg.7]    [Pg.7]    [Pg.12]   
See also in sourсe #XX -- [ Pg.258 ]




SEARCH



2-Halogenated phenolates

Halogen phenols

Halogenated phenols

Phenol halogenated phenols

Phenols halogenation

© 2024 chempedia.info