Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

H2 molecule

The character tables of these groups are given in table Al.4.6 and table Al.4.71. If there were no restriction on pemuitation symmetry we might think that die energy levels of the H2 molecule could be of any one of the following four syimnetry... [Pg.173]

Figure 2. Wavepacket dynamics of the H + H H2 + H scattering reaction, shown as snapshots of the density (wave packet amplitude squard) at various times, The coordinates, in au, are described in Figure la, and the wavepacket is initially moving to describe the H atom approaching the H2 molecule. The density has been integrated over the angular coordinate, The PES is plotted for the collinear interaction geometry, 0 180, ... Figure 2. Wavepacket dynamics of the H + H H2 + H scattering reaction, shown as snapshots of the density (wave packet amplitude squard) at various times, The coordinates, in au, are described in Figure la, and the wavepacket is initially moving to describe the H atom approaching the H2 molecule. The density has been integrated over the angular coordinate, The PES is plotted for the collinear interaction geometry, 0 180, ...
The most stable nuclear configuration of this system is a pair of H2 molecules. There are three possible spin coupling combinations for H4 corresponding to three distinct stable product H2 pairs H1 H2 with H3 H4, H1 H3 with H2 H4, and H1 H4 with H2 H3. Each H atom contributes one electron, the dot diagrams indicate spin pairing. The three combinations are designated as Hfl), HOT), and H(III), respectively. They may be interconverted via square transition states, Figure 2. [Pg.334]

In the following, we shall demonstrate techniques for calculating the electronic potential energy terms up to the second order. For simplicity, we shall study the case of H2 molecule, the simplest multi-electron diatomic molecule. [Pg.406]

Now let us use a more specific coordinate system shown in Figure 2 for H2 molecule. The z axis is taken to be along the intemuclei vector R. Adapting this coordinate-system, the consequence is that only the z coordinate of the nucleus are to be expanded in powers of k. That is, we define... [Pg.408]

In Chapter IX, Liang et al. present an approach, termed as the crude Bom-Oppenheimer approximation, which is based on the Born-Oppen-heimer approximation but employs the straightforward perturbation method. Within their chapter they develop this approximation to become a practical method for computing potential energy surfaces. They show that to carry out different orders of perturbation, the ability to calculate the matrix elements of the derivatives of the Coulomb interaction with respect to nuclear coordinates is essential. For this purpose, they study a diatomic molecule, and by doing that demonstrate the basic skill to compute the relevant matrix elements for the Gaussian basis sets. Finally, they apply this approach to the H2 molecule and show that the calculated equilibrium position and foree constant fit reasonable well those obtained by other approaches. [Pg.771]

Plot the curve of the bond energy of H2 vs. intemuclear distance for the H2 molecule using the STO-3G, double zeta valence (DZV), and triple zeta valence (TZV) basis sets in the GAMESS implementation. [Pg.318]

The factor of 2 in the denominator of the H2 molecule s rotational partition function is the "symmetry number" that must be inserted because of the identity of the two H nuclei. [Pg.515]

It is a well-known fact that the Hartree-Fock model does not describe bond dissociation correctly. For example, the H2 molecule will dissociate to an H+ and an atom rather than two H atoms as the bond length is increased. Other methods will dissociate to the correct products however, the difference in energy between the molecule and its dissociated parts will not be correct. There are several different reasons for these problems size-consistency, size-extensivity, wave function construction, and basis set superposition error. [Pg.223]

We will use the valence bond approach extensively m our discussion of organic molecules and expand on it shortly First though let s introduce the molecular orbital method to see how it uses the Is orbitals of two hydrogen atoms to generate the orbitals of an H2 molecule... [Pg.60]

FIGURE 2 4 Valence bond picture of bonding in H2 as illustrated by electro static potential maps The Is orbitals of two hydrogen atoms overlap to give an or bital that contains both elec trons of an H2 molecule... [Pg.61]

The F H- H — H —> F—H + H reaction is a common example of a reaction easily studied by classical trajectory analysis. The potential surface we are interested in is that for FH2. This potential surface may have many extrema. One of them corresponds to an isolated Fluorine atom and a stable H2 molecule these are the reactants. Another extremum of the surface corresponds to an isolated hydrogen atom and the stable H-Fmolecule these are the products. Depending on how the potential surface was obtained there may or may not be an extremum corresponding to stable H2F, but at the least you would expect an extremum corresponding to the transition state of the reaction being considered. [Pg.328]

Photochemistry. Vinyl chloride is subject to photodissociation. Photexcitation at 193 nm results in the elimination of HCl molecules and Cl atoms in an approximately 1.1 1 ratio (69). Both vinyUdene ( B2) [2143-69-3] and acetylene have been observed as photolysis products (70), as have H2 molecules (71) and H atoms [12385-13-6] (72). HCl and vinyUdene appear to be formed via a concerted 1,1 elimination from excited vinyl chloride (70). An adiabatic recoil mechanism seems likely for Cl atom elimination (73). As expected from the relative stabiUties of the 1- and 2-chlorovinyl radicals [50663-45-1 and 57095-76-8], H atoms are preferentially produced by detachment from the P carbon (72). Finally, a migration mechanism appears to play a significant role in H2 elimination (71). [Pg.415]

Some typical results for the physical properties of common gases which are of indusuial importance are given in Table 3.3. The special position of hydrogen which results from the small mass and size of the H2 molecule should be noted. [Pg.112]

High mass resolution techniques are used to separate peaks at the same nominal mass by the very small mass differences between them. As an example, a combination of Si and H to form the molecular ion Si H , severely degrades the detection limit of phosphorous ( P) in a silicon sample. The exact mass of phosphorous ( P) is 31.9738 amu while the real masses of the interfering Si H and Si H2 molecules are 31.9816 amu and 31.9921 amu, respectively. Figure 8 shows a mass... [Pg.543]

Molecular sieves are available with a variety of pore sizes. A molecular sieve should be selected with a pore size that will admit H2S and water while preventing heavy hydrocarbons and aromatic compound.s from entering the pores. However, carbon dioxide molecules are about the same size as H2S molecules and present problems. Even thougli die COi is non-polar and will not bond to the active sites, the CO2 will entci the pores. Small quantities of CO2 will become trapped in the pores In this way small portions of CO2 are removed. More importantly, CO ih obstruct the access of H2S and water to active sites and decrease the eflectiveness ot the pores. Beds must be sized to remove all water and to pi ovitte for interference from other molecules in order to remove all H i.S. [Pg.161]

In this section we review several studies of phase transitions in adsorbed layers. Phase transitions in adsorbed (2D) fluids and in adsorbed layers of molecules are studied with a combination of path integral Monte Carlo, Gibbs ensemble Monte Carlo (GEMC), and finite size scaling techniques. Phase diagrams of fluids with internal quantum states are analyzed. Adsorbed layers of H2 molecules at a full monolayer coverage in the /3 X /3 structure have a higher transition temperature to the disordered phase compared to the system with the heavier D2 molecules this effect is... [Pg.97]

These calculations began in 1927 with Heitler and London s approximate quantum mechanical treatment of the H2 molecule, which led to Eq. (5-13) for the energy. [Pg.194]

The structures of H5+, H7+ and Hg+ are related to that of H3+ with H2 molecules added perpendicularly at the comers, whereas those of H4+, H6+ and feature an added H atom at the first comer. Typical stmctures are shown below. The stmctures of higher members of the series, with n > 10 are unknown but may involve further loosely bonded H2 molecules above and below... [Pg.37]

Even the H atom itself can form compounds in which its coordination number (CN) is not just 1 (as expected) but also 2, 3, 4, 5 or even 6. A rich and unexpectedly varied coordination chemistry is thus emerging. We shall deal with the H atom first and then with the H2 molecule. [Pg.44]

The crucial experiment suggesting that the H2 molecule might act as a dihapto ligand to transition metals was the dramatic observation that toluene solutions of the deep purple coordinatively unsaturated 16-electron complexes [Mo(CO)3(PCy3)2] and [W(CO)3-(PCy3)2l (where Cy = cyclohexyl) react readily and cleanly with Ha (I atm) at low temperatures to precipitate yellow crystals of [M(CO)3H2(PCy3)2] in 85-95% yield. The... [Pg.44]

So, let s get a bit more chemical and imagine the formation of an H2 molecule from two separated hydrogen atoms, Ha and Hb, initially an infinite distance apart. Electron 1 is associated with nucleus A, electron 2 with nucleus B, and the terms in the electronic Hamiltonian / ab, ba2 and are all negligible when the nuclei are at infinite separation. Thus the electronic Schrodinger equation becomes... [Pg.88]

Consider the H2 molecule in a minimum basis consisting of one s-function on each centre, xa and xb- A RHF calculation will produce two MOs, and < 2, being the sum and difference of the two AOs. The sum of the two AOs is a bonding MO, with increased bability of finding the electrons between the two nuclei, while the difference is an antibonding MO, with decreased probability of finding the electrons between the two nuclei. [Pg.109]

There is an equivalent way of generating solutions to the electronic Schrodinger equation which conceptually is much closer to the experimentalists language, known as Valence Bond (VB) theory. We will start by illustrating the concepts for the H2 molecule, and note how it differ from MO methods. [Pg.195]

A single determinant MO wave function for the H2 molecule within a minimum basis consisting of a single s-function on each nucleus is given as (see also... [Pg.195]

The 2-configurational Cl wave function (7.4) allows a qualitatively correct description of the H2 molecule at all distances, in the dissociation limit the weights of the two configurations become equal. [Pg.196]

The molecular orbitals for the H2 molecule generated as a linear combination of two s-functions, one on each nuclear centre. [Pg.444]


See other pages where H2 molecule is mentioned: [Pg.156]    [Pg.156]    [Pg.173]    [Pg.173]    [Pg.1150]    [Pg.380]    [Pg.401]    [Pg.578]    [Pg.58]    [Pg.129]    [Pg.312]    [Pg.515]    [Pg.329]    [Pg.330]    [Pg.3]    [Pg.108]    [Pg.110]    [Pg.117]    [Pg.154]    [Pg.34]    [Pg.11]    [Pg.11]   
See also in sourсe #XX -- [ Pg.178 ]

See also in sourсe #XX -- [ Pg.498 , Pg.500 , Pg.501 ]




SEARCH



Electronic wave function for the H2 molecule

H2+ molecule-ion

Hydrogen H2 molecule

Reactivity of the (Si-)3C Radicals Toward H2 Molecules

Valence Bond Output for the H2 Molecule

Why is the H2 molecule stable

© 2024 chempedia.info