Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Grignard reagents alcohol synthesis

An ability to form carbon-carbon bonds is fundamental to organic synthesis The addition of Grignard reagents to aldehydes and ketones is one of the most frequently used reactions m synthetic organic chemistry Not only does it permit the extension of carbon chains but because the product is an alcohol a wide variety of subsequent func tional group transformations is possible... [Pg.595]

Tertiary alcohols can be prepared by a variation of the Grignard synthesis that uses esters as the source of the carbonyl group Methyl and ethyl esters are readily available and are the types most often used Two moles of a Grignard reagent are required per mole of ester the first mole reacts with the ester converting it to a ketone... [Pg.601]

Alcohol synthesis via the reaction of Grignard reagents with carbonyl com pounds (Section 14 6) This is one of the most useful reactions in synthetic organ ic chemistry Grignard reagents react with formaldehyde to yield primary alco hols with aldehydes to give secondary alcohols and with ketones to form terti ary alcohols... [Pg.616]

Synthesis of alcohols using organolithi um reagents (Section 14 7) Organolithi um reagents react with aldehydes and ketones in a manner similar to that of Grignard reagents to produce alcohols... [Pg.616]

Miscellaneous Reactions. Sodium bisulfite adds to acetaldehyde to form a white crystalline addition compound, insoluble in ethyl alcohol and ether. This bisulfite addition compound is frequendy used to isolate and purify acetaldehyde, which may be regenerated with dilute acid. Hydrocyanic acid adds to acetaldehyde in the presence of an alkaU catalyst to form cyanohydrin the cyanohydrin may also be prepared from sodium cyanide and the bisulfite addition compound. Acrylonittile [107-13-1] (qv) can be made from acetaldehyde and hydrocyanic acid by heating the cyanohydrin that is formed to 600—700°C (77). Alanine [302-72-7] can be prepared by the reaction of an ammonium salt and an alkaU metal cyanide with acetaldehyde this is a general method for the preparation of a-amino acids called the Strecker amino acids synthesis. Grignard reagents add readily to acetaldehyde, the final product being a secondary alcohol. Thioacetaldehyde [2765-04-0] is formed by reaction of acetaldehyde with hydrogen sulfide thioacetaldehyde polymerizes readily to the trimer. [Pg.51]

Pyridine undergoes 2- and 4-alkylation with Grignard reagents, depending on whether free metal is present (19). Free metal gives mixtures or exclusive 4-alkylation. Substituent-directed metaHation (eq. 5) has become an important approach to the synthesis of disubstituted pyridines (12). For example, 2- uoro-pyridine [372-48-5] reacts with butyUithium and acetaldehyde to give a 93% yield of alcohol [79527-61-1]. [Pg.325]

All that has been said in this section applies with equal force to the use of organo-lithium reagents in the synthesis of alcohols. Grignard reagents are one source of nucleophilic carbon organolithium reagents are another. Both have substantial carbanionic char acter in their- car bon-metal bonds and undergo the same kind of reaction with aldehydes and ketones. [Pg.601]

Alcohol synthesis via the reaction of Grignard reagents with carbonyl compounds (Section 14.6) This is one of the... [Pg.616]

Synthesis of acetylenic alcohols (Section 14.8) Sodium acetylide and acetylenic Grignard reagents react with aldehydes and ketones to give alcohols of the type... [Pg.617]

An interesting appetite suppressant very distantly related to hexahydroamphetamines is somanta-dine (24). The reported synthesis starts with conversion of 1-adamantanecarboxylic acid (20) via the usual steps to the ester, reduction to the alcohol, transformation to the bromide (21), conversion of the latter to a Grignard reagent with magnesium metal, and transformation to tertiary alcohol 22 by reaction with acetone. Displacement to the fomiamide (23) and hydrolysis to the tertiary amine (24) completes the preparation of somantadine [6]. [Pg.4]

Methods of synthesis for carboxylic acids include (1) oxidation of alkyl-benzenes, (2) oxidative cleavage of alkenes, (3) oxidation of primary alcohols or aldehydes, (4) hydrolysis of nitriles, and (5) reaction of Grignard reagents with CO2 (carboxylation). General reactions of carboxylic acids include (1) loss of the acidic proton, (2) nucleophilic acyl substitution at the carbonyl group, (3) substitution on the a carbon, and (4) reduction. [Pg.774]

Johnson s classic synthesis of progesterone (1) commences with the reaction of 2-methacrolein (22) with the Grignard reagent derived from l-bromo-3-pentyne to give ally lie alcohol 20 (see Scheme 3a). It is inconsequential that 20 is produced in racemic form because treatment of 20 with triethyl orthoacetate and a catalytic amount of propionic acid at 138 °C furnishes 18 in an overall yield of 55 % through a process that sacrifices the stereogenic center created in the carbonyl addition reaction. In the presence of propionic acid, allylic alcohol 20 and triethyl orthoacetate combine to give... [Pg.88]

Especially in the early steps of the synthesis of a complex molecule, there are plenty of examples in which epoxides are allowed to react with organometallic reagents. In particular, treatment of enantiomerically pure terminal epoxides with alkyl-, alkenyl-, or aryl-Grignard reagents in the presence of catalytic amounts of a copper salt, corresponding cuprates, or metal acetylides via alanate chemistry, provides a general route to optically active substituted alcohols useful as valuable building blocks in complex syntheses. [Pg.290]

Problem Alcohol (14) was needed to make the corresponding Grignard reagent.Suggest a synthesis guided by branch-point disconnect ions. [Pg.104]

Mikolajczyk and coworkers have summarized other methods which lead to the desired sulfmate esters These are asymmetric oxidation of sulfenamides, kinetic resolution of racemic sulfmates in transesterification with chiral alcohols, kinetic resolution of racemic sulfinates upon treatment with chiral Grignard reagents, optical resolution via cyclodextrin complexes, and esterification of sulfinyl chlorides with chiral alcohols in the presence of optically active amines. None of these methods is very satisfactory since the esters produced are of low enantiomeric purity. However, the reaction of dialkyl sulfites (33) with t-butylmagnesium chloride in the presence of quinine gave the corresponding methyl, ethyl, n-propyl, isopropyl and n-butyl 2,2-dimethylpropane-l-yl sulfinates (34) of 43 to 73% enantiomeric purity in 50 to 84% yield. This made available sulfinate esters for the synthesis of t-butyl sulfoxides (35). [Pg.63]

The addition of Grignard reagents to aldehydes, ketones, and esters is the basis for the synthesis of a wide variety of alcohols, and several examples are given in Scheme 7.3. Primary alcohols can be made from formaldehyde (Entry 1) or, with addition of two carbons, from ethylene oxide (Entry 2). Secondary alcohols are obtained from aldehydes (Entries 3 to 6) or formate esters (Entry 7). Tertiary alcohols can be made from esters (Entries 8 and 9) or ketones (Entry 10). Lactones give diols (Entry 11). Aldehydes can be prepared from trialkyl orthoformate esters (Entries 12 and 13). Ketones can be made from nitriles (Entries 14 and 15), pyridine-2-thiol esters (Entry 16), N-methoxy-A-methyl carboxamides (Entries 17 and 18), or anhydrides (Entry 19). Carboxylic acids are available by reaction with C02 (Entries 20 to 22). Amines can be prepared from imines (Entry 23). Two-step procedures that involve formation and dehydration of alcohols provide routes to certain alkenes (Entries 24 and 25). [Pg.638]


See other pages where Grignard reagents alcohol synthesis is mentioned: [Pg.145]    [Pg.19]    [Pg.591]    [Pg.594]    [Pg.594]    [Pg.595]    [Pg.598]    [Pg.601]    [Pg.336]    [Pg.325]    [Pg.103]    [Pg.513]    [Pg.591]    [Pg.594]    [Pg.595]    [Pg.133]    [Pg.232]    [Pg.199]    [Pg.626]    [Pg.1284]    [Pg.145]    [Pg.178]    [Pg.204]    [Pg.223]    [Pg.63]    [Pg.956]    [Pg.801]    [Pg.153]    [Pg.33]    [Pg.956]    [Pg.157]   
See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



ALCOHOL SYNTHESIS USING GRIGNARD REAGENTS

Alcohols Grignard

Alcohols Grignard reagents

Alcohols reagents

Alcohols synthesis

Grignard reagent synthesis

Grignard synthesis

SYNTHESIS OF ALCOHOLS USING GRIGNARD REAGENTS

Synthesis of Alcohols Using Grignard and Organolithium Reagents

© 2024 chempedia.info