Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass transition temperature adhesion

Europe. The glass transition temperature, adhesive are given in Table 2. [Pg.318]

Elastomeric Modified Adhesives. The major characteristic of the resins discussed above is that after cure, or after polymerization, they are extremely brittie. Thus, the utility of unmodified common resins as stmctural adhesives would be very limited. Eor highly cross-linked resin systems to be usehil stmctural adhesives, they have to be modified to ensure fracture resistance. Modification can be effected by the addition of an elastomer which is soluble within the cross-linked resin. Modification of a cross-linked resin in this fashion generally decreases the glass-transition temperature but increases the resin dexibiUty, and thus increases the fracture resistance of the cured adhesive. Recendy, stmctural adhesives have been modified by elastomers which are soluble within the uncured stmctural adhesive, but then phase separate during the cure to form a two-phase system. The matrix properties are mosdy retained the glass-transition temperature is only moderately affected by the presence of the elastomer, yet the fracture resistance is substantially improved. [Pg.233]

This type of adhesive is generally useful in the temperature range where the material is either leathery or mbbery, ie, between the glass-transition temperature and the melt temperature. Hot-melt adhesives are based on thermoplastic polymers that may be compounded or uncompounded ethylene—vinyl acetate copolymers, paraffin waxes, polypropylene, phenoxy resins, styrene—butadiene copolymers, ethylene—ethyl acrylate copolymers, and low, and low density polypropylene are used in the compounded state polyesters, polyamides, and polyurethanes are used in the mosdy uncompounded state. [Pg.235]

In the area of moleculady designed hot-melt adhesives, the most widely used resins are the polyamides (qv), formed upon reaction of a diamine and a dimer acid. Dimer acids (qv) are obtained from the Diels-Alder reaction of unsaturated fatty acids. Linoleic acid is an example. Judicious selection of diamine and diacid leads to a wide range of adhesive properties. Typical shear characteristics are in the range of thousands of kilopascals and are dependent upon temperature. Although hot-melt adhesives normally become quite brittle below the glass-transition temperature, these materials can often attain physical properties that approach those of a stmctural adhesive. These properties severely degrade as the material becomes Hquid above the melt temperature. [Pg.235]

Plasticizers and Processing Aids. Petroleum-based oils are commonly used as plasticizers. Compound viscosity is reduced, and mixing, processing, and low temperature properties are improved. Air permeabihty is increased by adding extender oils. Plasticizers are selected for their compatibihty and low temperature properties. Butyl mbber has a solubihty parameter of ca 15.3 (f /cm ) [7.5 (cal/cm ) ], similar to paraffinic and naphthenic oils. Polybutenes, paraffin waxes, and low mol wt polyethylene can also be used as plasticizers (qv). Alkyl adipates and sebacates reduce the glass-transition temperature and improve low temperature properties. Process aids, eg, mineral mbber and Stmktol 40 ms, improve filler dispersion and cured adhesion to high unsaturated mbber substrates. [Pg.485]

Poly(vinyl acetate) is too soft and shows excessive cold flow for use in moulded plastics. This is no doubt associated with the fact that the glass transition temperature of 28°C is little above the usual ambient temperatures and in fact in many places at various times the glass temperature may be the lower. It has a density of 1.19 g/cm and a refractive index of 1.47. Commercial polymers are atactic and, since they do not crystallise, transparent (if free from emulsifier). They are successfully used in emulsion paints, as adhesives for textiles, paper and wood, as a sizing material and as a permanent starch . A number of grades are supplied by manufacturers which differ in molecular weight and in the nature of comonomers (e.g. vinyl maleate) which are commonly used (see Section 14.4.4)... [Pg.389]

A second general criterion for pressure sensitivity is that the glass transition temperature of the adhesive be below the use temperature, which is usually room temperature. Broadly speaking, the To will be about 30-70°C below room temperature, depending on the base polymer and any added modifiers. [Pg.466]

Tackifying resins enhance the adhesion of non-polar elastomers by improving wettability, increasing polarity and altering the viscoelastic properties. Dahlquist [31 ] established the first evidence of the modification of the viscoelastic properties of an elastomer by adding resins, and demonstrated that the performance of pressure-sensitive adhesives was related to the creep compliance. Later, Aubrey and Sherriff [32] demonstrated that a relationship between peel strength and viscoelasticity in natural rubber-low molecular resins blends existed. Class and Chu [33] used the dynamic mechanical measurements to demonstrate that compatible resins with an elastomer produced a decrease in the elastic modulus at room temperature and an increase in the tan <5 peak (which indicated the glass transition temperature of the resin-elastomer blend). Resins which are incompatible with an elastomer caused an increase in the elastic modulus at room temperature and showed two distinct maxima in the tan <5 curve. [Pg.620]

Tackifiers. SBRs have poor tack, so addition of tackifiers is necessary. The tackifier increases the wetting of the adhesive and also increases the glass transition temperature of the adhesive. Typical tackifiers for SBR adhesives are rosins, aromatic hydrocarbon resins, alpha-pinene, coumarone-indene and phenolic resins. [Pg.655]

Most structural adhesives would be classified as plastics, i.e., they have a glass transition temperature higher than room temperature (25 C). Pure plastic adhe-... [Pg.772]

Urethane structural adhesives have a morphology that is inverse to the toughened epoxy just described. The urethanes have a rubber continuous phase, with glass transition temperatures of approximately —50°C. This phase is referred to as the .soft segment . Often, a discontinuous plastic phase forms within the soft segment, and that plastic phase may even be partially crystalline. This is referred to as the hard segment . A representation of the morphology is shown in Fig. 3 [34]. [Pg.773]

The two-component urethane structural adhesives are among the most difficult to characterize, simply because of the widely varying properties that are possible. These adhesives may be rigid plastics similar in modulus to standard epoxy adhesives, with glass transition temperatures of the cured adhesive being approximately 60°C. [Pg.795]

Adhesive strength is evaluated at room temperature as well as at the extreme temperatures of —65°F and 180°F. Aircraft structure can reach —65°F at cruise altitudes and 180°F on the ground in a hot, sunny location. The types of toughened epoxies commonly used for metal bond adhesives have glass transition temperatures not much greater than 200°F, so properties fall off drastically at higher temperatures. [Pg.1147]


See other pages where Glass transition temperature adhesion is mentioned: [Pg.272]    [Pg.85]    [Pg.272]    [Pg.85]    [Pg.455]    [Pg.178]    [Pg.233]    [Pg.233]    [Pg.285]    [Pg.539]    [Pg.358]    [Pg.27]    [Pg.57]    [Pg.450]    [Pg.464]    [Pg.470]    [Pg.317]    [Pg.485]    [Pg.332]    [Pg.3]    [Pg.159]    [Pg.561]    [Pg.620]    [Pg.624]    [Pg.668]    [Pg.680]    [Pg.774]    [Pg.775]    [Pg.780]    [Pg.795]    [Pg.829]    [Pg.1011]    [Pg.1077]    [Pg.1156]    [Pg.56]    [Pg.578]    [Pg.591]   


SEARCH



Adhesion temperature

Adhesion transition

Adhesive formulations glass-transition temperature

Epoxy structural adhesive glass transition temperature

Glass transition temperature flow adhesion

The Effect of Glass Transition Temperature on Adhesives and Sealants

© 2024 chempedia.info