Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Glass kinetics

Romeas V, Pichat P, Guillard C, Chopin T, Lehaut C. Degradation of palmitic (hexadecanoic) acid deposited on Ti02-coated self-cleaning glass kinetics of disappearance, intermediate products and degradation pathways. New J Chem 1999 23 365-373. [Pg.123]

Badjid J.D., Kostid N.M. Reactivity of organic compounds inside micelles anbedded in sol-gel glass. Kinetics of isomerization of azobenzene inside CTAB and SDS micelles anbedded in silica matrix. [Pg.479]

Samples can be concentrated beyond tire glass transition. If tliis is done quickly enough to prevent crystallization, tliis ultimately leads to a random close-packed stmcture, witli a volume fraction (j) 0.64. Close-packed stmctures, such as fee, have a maximum packing density of (]) p = 0.74. The crystallization kinetics are strongly concentration dependent. The nucleation rate is fastest near tire melting concentration. On increasing concentration, tire nucleation process is arrested. This has been found to occur at tire glass transition [82]. [Pg.2686]

To provide a rational framework in terms of which the student can become familiar with these concepts, we shall organize our discussion of the crystal-liquid transition in terms of thermodynamic, kinetic, and structural perspectives. Likewise, we shall discuss the glass-liquid transition in terms of thermodynamic and mechanistic principles. Every now and then, however, to impart a little flavor of the real world, we shall make reference to such complications as the prior history of the sample, which can also play a role in the solid behavior of a polymer. [Pg.200]

The kinetic nature of the glass transition should be clear from the last chapter, where we first identified this transition by a change in the mechanical properties of a sample in very rapid deformations. In that chapter we concluded that molecular motion could simply not keep up with these high-frequency deformations. The complementarity between time and temperature enters the picture in this way. At lower temperatures the motion of molecules becomes more sluggish and equivalent effects on mechanical properties are produced by cooling as by frequency variations. We shall return to an examination of this time-temperature equivalency in Sec. 4.10. First, however, it will be profitable to consider the possibility of a thermodynamic description of the transition which occurs at Tg. [Pg.244]

The Cannon-Fenske viscometer (Fig. 24b) is excellent for general use. A long capillary and small upper reservoir result in a small kinetic energy correction the large diameter of the lower reservoir minimises head errors. Because the upper and lower bulbs He on the same vertical axis, variations in the head are minimal even if the viscometer is used in positions that are not perfecdy vertical. A reverse-flow Cannon-Fen ske viscometer is used for opaque hquids. In this type of viscometer the Hquid flows upward past the timing marks, rather than downward as in the normal direct-flow instmment. Thus the position of the meniscus is not obscured by the film of Hquid on the glass wall. [Pg.181]

A crystalline or semicrystalline state in polymers can be induced by thermal changes from a melt or from a glass, by strain, by organic vapors, or by Hquid solvents (40). Polymer crystallization can also be induced by compressed (or supercritical) gases, such as CO2 (41). The plasticization of a polymer by CO2 can increase the polymer segmental motions so that crystallization is kinetically possible. Because the amount of gas (or fluid) sorbed into the polymer is a dkect function of the pressure, the rate and extent of crystallization may be controUed by controlling the supercritical fluid pressure. As a result of this abiHty to induce crystallization, a history effect may be introduced into polymers. This can be an important consideration for polymer processing and gas permeation membranes. [Pg.223]

The results of determination of the form of presence of As, Se, Nb, Mo, Ni, Cu in different solid compounds ai e given. The application of RII LEL for the study of stmctural transformations in chalkogenid glasses is shown. The X-ray spectral determination of crystal water, the possibility of studying of dissolution-crystallization processes and kinetics of some chemical reactions ai e discussed. [Pg.80]

Fig. 9.10. Sulphur, glasses and polymers turn into viscous liquids at high temperature. The atoms in the liquid ore arranged in long polymerised chains. The liquids ore viscous because it is difficult to get these bulky chains to slide over one another. It is also hard to get the atoms to regroup themselves into crystals, and the kinetics of crystallisation are very slow. The liquid can easily be cooled past the nose of the C-curve to give a metastable supercooled liquid which can survive for long times at room temperature. Fig. 9.10. Sulphur, glasses and polymers turn into viscous liquids at high temperature. The atoms in the liquid ore arranged in long polymerised chains. The liquids ore viscous because it is difficult to get these bulky chains to slide over one another. It is also hard to get the atoms to regroup themselves into crystals, and the kinetics of crystallisation are very slow. The liquid can easily be cooled past the nose of the C-curve to give a metastable supercooled liquid which can survive for long times at room temperature.
Dale and co-workers examined this reaction in considerable detail some years later and utilized a mixture of HF and BFj in dioxane as catalyst. They noted that this catalyst mixture was stable for months at room temperature and did not etch glass. It was useful for initiating the cyclooligomerization reaction which led to a product mixture. The composition of the mixture was apparently independent of the ethylene oxide concentration and the reaction was apparently not kinetically controlled. [Pg.9]

Zauner and Jones (2000a) describe an experimental set-up for determination of precipitation kinetics, as shown in Figure 6.19. Briefly, the jacket glass reactor (1) (300 ml, d = 65 mm) is equipped with a polyethylene draft tube and four baffles. The contents are stirred using a three-blade marine-type propeller (5) with motor (Haake), which pumps the suspension upwards in the annulus and downwards inside the draft tube. Measured power inputs ranged from 3.3 X 10- to 1.686 W/kg. [Pg.180]

Let us examine some batch results. In trials in which 5 mL of a dye solution was added by pipet (with pressure) to 10 mL of water in a 25-mL flask, which was shaken to mix (as determined visually), and the mixed solution was delivered into a 3-mL rectangular cuvette, it was found that = 3-5 s, 2-4 s, and /obs 3-5 s. This is characteristic of conventional batch operation. Simple modifications can reduce this dead time. Reaction vessels designed for photometric titrations - may be useful kinetic tools. For reactions that are followed spectrophotometrically this technique is valuable Make a flat button on the end of a 4-in. length of glass rod. Deliver 3 mL of reaction medium into the rectangular cuvette in the spectrophotometer cell compartment. Transfer 10-100 p.L of a reactant stock solution to the button on the rod. Lower this into the cuvette, mix the solution with a few rapid vertical movements of the rod, and begin recording the dead time will be 3-8 s. A commercial version of the stirrer is available. [Pg.177]


See other pages where Glass kinetics is mentioned: [Pg.365]    [Pg.365]    [Pg.1968]    [Pg.2668]    [Pg.114]    [Pg.579]    [Pg.284]    [Pg.285]    [Pg.333]    [Pg.335]    [Pg.338]    [Pg.339]    [Pg.64]    [Pg.198]    [Pg.7]    [Pg.367]    [Pg.170]    [Pg.233]    [Pg.398]    [Pg.373]    [Pg.375]    [Pg.376]    [Pg.162]    [Pg.235]    [Pg.242]    [Pg.321]    [Pg.397]    [Pg.143]    [Pg.532]    [Pg.226]    [Pg.251]    [Pg.306]    [Pg.497]    [Pg.565]    [Pg.566]    [Pg.287]    [Pg.439]    [Pg.880]    [Pg.233]    [Pg.239]   
See also in sourсe #XX -- [ Pg.277 , Pg.278 , Pg.279 ]




SEARCH



© 2024 chempedia.info