Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Geometries of polymerization

Crotonaldehyde, hydrogenation of, 43-48 Cubane, isomerization of, 148 Cyclic dienes, metathesis of, 135 Cyclic polyenes, metathesis of, 135 Cycloalkenes, metathesis of, 134-136 kinetic model, 164 ring-opening polymerization, 143 stereoselectivity, 158-160 transalkylation, 142-144 transalkylidenation, 142-144 Cyclobutane configuration, 147 geometry of, 145, 146 Cyclobutene, metathesis of, 135 1,5,9-Cyclododecatriene, metathesis of, 135... [Pg.416]

The mechanical behaviour of a two-phase composite system depends partly on the filler characteristics, such as the geometry of inclusions, their size, the size distribution, the orientation of inclusions, the filler volume-fraction, the relative positions between the inclusions, the physical state of the filler, etc. and partly on the matrix characteristics, which are related to the physico-chemical state of the matrix, the degree of its polymerization, the crystallinity, the degree of cross-linking, etc. [Pg.150]

In order to get a quantitative idea of the magnitude of the effects of these temperature variations on molecular structure and morphology an experimental study was undertaken. Two types of polymerizations were conducted. One type was isothermal polymerization at fixed reaction time at a series of temperatures. The other type was a nonisothermal polymerization in the geometry of a RIM mold. Intrinsic viscosities, size exclusion chromotograms (gpc) and differential scanning calorimetry traces (dsc) were obtained for the various isothermal products and from spatially different sections of the nonisothermal products. Complete experimental details are given below. [Pg.162]

Similar results are obtained from incineration of polymeric materials with octabromo- and pentabromodiphenyl ether (refs. 11,12). The temperature with the maximum PBDF-yield depends on the kind of polymeric matrix. All three bromo ethers 1-2 give the same isomer distribution pattern with preference for tetrabrominated dibenzofiirans. The overall yield of PBDF is lower for incineration of pentabromobiphenyl ether 2, 4 % at 700°C compared to 29 % for ether 1 at 500 °C (ref. 12). The preferred formation of tetrabrominated fiirans observed at all temperatures cannot be a result of thermodynamic control of the cyclisation reaction it is likely due to the special geometry of the furnaces. One explanation is that a spontaneous reaction occurs at approximately 400°C while the pyrolysis products are transferred to the cooler zones of the reactor details can be found elsewhere (ref. 12). [Pg.372]

Hunter (60) reported a self-assembled open polymer formed by a zinc porphyrin bearing one para-aniline substituent at the meso position. The ortho- and mela-analogs discussed above form closed dimers, but the geometry of the para-derivative precludes this, and polymerization is the only alternative (76, Fig. 31). Although the dilution experiments could be fitted to a non-cooperative polymerization model with a pairwise association constant (K = 190 M 1) practically identical to that found for simple aniline-zinc porphyrin complexes (K = 130 M 1), broadening of the 4H NMR spectrum at high concentrations is characteristic of oligomerization. [Pg.249]

Diiminatc zinc complexes are highly active catalysts in the copolymerization of epoxides and C02. Complexes that are catalytic are of the form ZnLX, where X is alkoxide, acetate, or bis(tri-methylsilyl)amide. Changing the ligand geometries of the complexes allows variation in the catalytic behavior and activity.941 The polymerization of lactide with diiminate zinc has also been studied.942... [Pg.1231]

A series of novel, bridged Zr(IV)-boratabenzene complexes have been synthesized and structurally characterized (Scheme 28).48 The geometries of these adducts closely resemble those of classical ansa-metallocenes. In the presence of excess MAO, these boratabenzene complexes catalyze the polymerization of olefins. [Pg.115]

The Dow corporation has recently developed constrained geometry addition polymerization catalysts (CGCT), typically Me2Si(C5Me4)(NBut)MCl2 (M = Ti, Zr, Hf) (141) activated with MAO. The homo-polymerization of a-olefins by CGCT afford atactic or somewhat syndiotactic (polypropylene rr 69%) polymers. The metal center of the catalyst opens the coordination sphere and enables the co-polymerization of ethylene to take place, not only with common monomers such as propylene, butene, hexene, and octene, but also with sterically hindered a-olefins such as styrene and 4-vinylcyclohexene [202]. [Pg.32]

The course of stereospecific olefin polymerization was studied by using the molecular mechanics programs, MM-2 and Biograph, based on the optimized geometries of the ethylene complex and the transition state [13,203]. Interestingly, the steric interaction at the transition state mainly controls the stereochemistry in polymerization, which proceeds specifically isotactic or syndiotactic depending on the kind of catalyst. [Pg.33]

With these features in mind, we envisioned a new family of macrocyclic ligands for olefin polymerization catalysis (Fig. 9) [131, 132], We utilized macrocycles as the ligand framework and installed the catalytic metal center in the core of the macrocycles. Appropriate intra-annular binding sites are introduced into cyclophane framework that not only match the coordination geometry of a chosen metal but also provide the appropriate electronic donation to metal center. The cyclophane framework would provide a microenvironment to shield the catalytic center from all angles, but leaving two cis coordination sites open in the front one for monomer coordination and the other for the growing polymer chain. This could potentially protect the catalytic center and prevent it from decomposition or vulnerable side reactions. [Pg.207]

An advantage of this approach to model large-scale fluidized bed reactors is that the behavior of bubbles in fluidized beds can be readily incorporated in the force balance of the bubbles. In this respect, one can think of the rise velocity, and the tendency of rising bubbles to be drawn towards the center of the bed, from the mutual interaction of bubbles and from wall effects (Kobayashi et al., 2000). In Fig. 34, two preliminary calculations are shown for an industrial-scale gas-phase polymerization reactor, using the discrete bubble model. The geometry of the fluidized bed was 1.0 x 3.0 x 1.0 m (w x h x d). The emulsion phase has a density of 400kg/m3, and the apparent viscosity was set to 1.0 Pa s. The density of the bubble phase was 25 g/m3. The bubbles were injected via 49 nozzles positioned equally distributed in a square in the middle of the column. [Pg.142]


See other pages where Geometries of polymerization is mentioned: [Pg.17]    [Pg.429]    [Pg.246]    [Pg.174]    [Pg.122]    [Pg.82]    [Pg.17]    [Pg.429]    [Pg.246]    [Pg.174]    [Pg.122]    [Pg.82]    [Pg.141]    [Pg.184]    [Pg.14]    [Pg.706]    [Pg.329]    [Pg.631]    [Pg.115]    [Pg.134]    [Pg.46]    [Pg.65]    [Pg.180]    [Pg.216]    [Pg.88]    [Pg.75]    [Pg.186]    [Pg.256]    [Pg.71]    [Pg.404]    [Pg.126]    [Pg.110]    [Pg.146]    [Pg.336]    [Pg.635]    [Pg.979]    [Pg.93]    [Pg.163]    [Pg.227]    [Pg.92]    [Pg.33]    [Pg.291]    [Pg.11]   


SEARCH



© 2024 chempedia.info