Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

General Function of Signal Pathways

The enormous structural variety and functional capacity of multicellular organisms is due to their ability to coordinate the biochemical reactions of the various cells of the total organism. The basis for this coordination is the intercellular communication, which allows a single cell to influence the behavior of other cells in a specific manner. We currently know of various forms of communication between cells (Fig. 3.1)  [Pg.115]

Gap Junctions Communication between bordering cells is possible via direct contact in the form of gap junctions . Gap junctions are channels that connect two neighboring cells to allow a direct exchange of metabolites and signaling molecules between the cells. [Pg.115]

Cell-cell interaction via cell surface proteins Another form of direct communication between cells occurs with the help of surface proteins. In this process a cell surface protein of one cell binds a specific complementary protein on another cell. As a consequence of the complex formation, an intracellular signal chain is activated which initiates specific biochemical reactions in the participating cells. [Pg.115]

A further intercellular communication mechanism relies on electrical processes. The conduction of electrical impulses by nerve cells is based on changes in the membrane potential. The nerve cell uses these changes to communicate with other cells at specialized nerve endings, the synapses. It is central to this type of intercellular communication that electrical signals can be transformed into chemical signals. This type of communication will not be discussed in this book. [Pg.115]

Intercellular signal transduction influences nearly every physiological reaction. It ensures that all cells of a particular type receive and transform a signal. In this manner, cells of the same type react synchronously to a signal. A further function of signaling pathways is the coordination of metabolite fluxes between cells of various tissues. [Pg.115]


Fig. 5.5. General functions of transmembrane receptors. Extracellular signals convert the transmembrane receptor from the inactive form R to the active form R. The activated receptor transmits the signal to effector proteins next in the reaction sequence. Important effector reactions are the activation of heterotrimeric G-proteins, of protein tyrosine kinases and of protein tyrosine phosphatases. The tyrosine kinases and tyrosine phosphatases may be an intrinsic part of the receptor or they may be associated with the receptor. The activated receptor may also include adaptor proteins in the signaling pathway or it may induce opening of ion channels. Fig. 5.5. General functions of transmembrane receptors. Extracellular signals convert the transmembrane receptor from the inactive form R to the active form R. The activated receptor transmits the signal to effector proteins next in the reaction sequence. Important effector reactions are the activation of heterotrimeric G-proteins, of protein tyrosine kinases and of protein tyrosine phosphatases. The tyrosine kinases and tyrosine phosphatases may be an intrinsic part of the receptor or they may be associated with the receptor. The activated receptor may also include adaptor proteins in the signaling pathway or it may induce opening of ion channels.
Neurotrophins (NGF brain-derived neurotrophic factor, BDNF neurotrophin-3, NT-3 NT-4 NT-6) are important regulators of neural survival, development, function, and plasticity of the vertebrate nervous system [1]. Neurotrophins generally function as noncovalently associated homodimers. They activate two different classes of receptors, through which signaling pathways can be activated, including those mediated by Ras and members of the cdc42/rac/rho G protein families, MAP kinase, PI-3 kinase, and Jun kinase cascades. [Pg.843]

Figure 21.3 Modeling and simulation in the general context of the study of xenobiot-ics. The network of signals and regulatory pathways, sources of variability, and multistep regulation that are involved in this problem is shown together with its main components. It is important to realize how between-subject and between-event variation must be addressed in a model of the system that is not purely structural, but also statistical. The power of model-based data analysis is to elucidate the (main) subsystems and their putative role in overall regulation, at a variety of life stages, species, and functional (cell to organismal) levels. Images have been selected for illustrative purposes only. See color plate. Figure 21.3 Modeling and simulation in the general context of the study of xenobiot-ics. The network of signals and regulatory pathways, sources of variability, and multistep regulation that are involved in this problem is shown together with its main components. It is important to realize how between-subject and between-event variation must be addressed in a model of the system that is not purely structural, but also statistical. The power of model-based data analysis is to elucidate the (main) subsystems and their putative role in overall regulation, at a variety of life stages, species, and functional (cell to organismal) levels. Images have been selected for illustrative purposes only. See color plate.

See other pages where General Function of Signal Pathways is mentioned: [Pg.119]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.126]    [Pg.128]    [Pg.130]    [Pg.132]    [Pg.134]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.146]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.119]    [Pg.120]    [Pg.122]    [Pg.124]    [Pg.126]    [Pg.128]    [Pg.130]    [Pg.132]    [Pg.134]    [Pg.136]    [Pg.138]    [Pg.140]    [Pg.142]    [Pg.144]    [Pg.146]    [Pg.115]    [Pg.117]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.125]    [Pg.264]    [Pg.306]    [Pg.317]    [Pg.336]    [Pg.120]    [Pg.35]    [Pg.193]    [Pg.333]    [Pg.347]    [Pg.359]    [Pg.1046]    [Pg.541]    [Pg.1319]    [Pg.173]    [Pg.435]    [Pg.92]    [Pg.293]    [Pg.1114]    [Pg.319]    [Pg.330]    [Pg.7]    [Pg.136]    [Pg.213]    [Pg.116]    [Pg.154]   


SEARCH



Functional general

General functions

Pathway signalling

Signal function

Signal pathways

Signaling pathway

Signaling pathway General functions

Signals general

© 2024 chempedia.info