Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Furan chloride

Benzoic acid and naphthoic acid are formed by the oxidative carbonylation by use of Pd(OAc)2 in AcOH. t-Bu02H and allyl chloride are used as reoxidants. Addition of phenanthroline gives a favorable effect[360], Furan and thiophene are also carbonylated selectively at the 2-position[361,362]. fndole-3-carboxylic acid is prepared by the carboxylation of 1-acetylindole using Pd(OAc)2 and peroxodisulfate (Na2S208)[362aj. Benzoic acid derivatives are obtained by the reaction of benzene derivatives with sodium palladium mal-onate in refluxing AcOH[363]. [Pg.78]

Pd(II) salts promote the carbonylation of organomercury compounds. Reaction of phenylmercury chloride and PdCh under CO pressure affords benzophenone (429)[387]. Both esters and ketones are obtained by the carbonylation of furylmercury(Il) chloride in alcohol[388]. Although the yields are not satisfactory, esters are obtained by the carbonylation of aryl- and alkylmercuryfll) chlorides[389,390]. One-pot catalytic carbonylation of thiophene, furan, and pyrrole (430) takes place at the 2-position via mercuration and transmetallation by the use of PdCb, Hg(N03), and CuCl2[391]. [Pg.83]

The cyclic enol ether 255 from the functionalized 3-alkynoI 254 was converted into the furans 256 by the reaction of allyl chloride, and 257 by elimination of MeOH[132], The alkynes 258 and 260, which have two hydroxy groups at suitable positions, are converted into the cyclic acetals 259 and 261. Carcogran and frontalin have been prepared by this reaction[124]. [Pg.501]

Therapeutics. Compounds containing the furan or tetrahydrofuran ring are biologically active and are present in a number of pharmaceutical products. Eurfurjdamine [617-89-0] is an intermediate in the diuretic, furosemide. Tetrahydrofurfurylamine [4795-29-3] may also have pharmaceutical applications. 5-(E)imethyiaininomethyi)furfuryi alcohol [15433-79-17 is an intermediate in the preparation of ranitidine, which is used for treating ulcers. 2-Acet5dfuran [1192-62-7] prepared from acetic anhydride and furan is an intermediate in the synthesis of cefuroxime, a penicillin derivative. 2-Euroic acid is prepared by the oxidation of furfural. Both furoic acid [88-14-2] and furoyl chloride [527-69-5] are used as pharmaceutical intermediates. [Pg.83]

In the now-obsolete furfural process, furfural was decarboxylated to furan which was then hydrogenated to tetrahydrofuran (THF). Reaction of THF with hydrogen chloride produced dichlorobutene. Adiponitrile was produced by the reaction of sodium cyanide with the dichlorobutene. The overall yield from furfural to adiponitrile was around 75%. [Pg.220]

Using a number of other aldehydes, more compHcated products result. Stmcture (2) was also found to react with alkynes in the presence of copper(I) chloride to give furans ... [Pg.134]

Heterocychc compounds range from those, such as furan which is readily halogenated and tends to give polyhalogenated products, to pyridine which forms a complex with aluminum chloride that can only be brominated to 50% reaction (23). [Pg.282]

The chemical consequences of /3-protonation are illustrated further by the ring-opening reactions of furans with methanolic hydrogen chloride and of (V-substituted pyrroles with hydroxylamine hydrochloride (Scheme 11) (82CC800). [Pg.48]

An important extension of these reactions is the Mannich reaction, in which aminomethyl-ation is achieved by the combination of formaldehyde, a secondary amine and acetic acid (Scheme 24). The intermediate immonium ion generated from formaldehyde, dimethyl-amine and acetic acid is not sufficiently reactive to aminomethylate furan, but it will form substitution products with alkylfurans. The Mannich reaction appears to be still more limited in its application to thiophene chemistry, although 2-aminomethylthiophene has been prepared by reaction of thiophene with formaldehyde and ammonium chloride. The use of A,iV-dimethyf (methylene) ammonium chloride (Me2N=CH2 CF) has been recommended for the iV,iV-dimethylaminomethylation of thiophenes (83S73). [Pg.55]

Mercury(II) acetate tends to mercurate all the free nuclear positions in pyrrole, furan and thiophene to give derivatives of type (74). The acetoxymercuration of thiophene has been estimated to proceed ca. 10 times faster than that of benzene. Mercuration of rings with deactivating substituents such as ethoxycarbonyl and nitro is still possible with this reagent, as shown by the formation of compounds (75) and (76). Mercury(II) chloride is a milder mercurating agent, as illustrated by the chloromercuration of thiophene to give either the 2- or 2,5-disubstituted product (Scheme 25). [Pg.55]

The replacement of rhodium from a wide range of rhodacycles to form condensed furans, thiophenes, selenophenes, tellurophenes and pyrroles has been widely explored and a range of examples is shown in Scheme 97. The rhodacycles are readily generated from the appropriate dialkyne and tris(triphenylphosphine)rhodium chloride. Replacement of the rhodium by sulfur, selenium or tellurium is effected by direct treatment with the element, replacement by oxygen using m-chloroperbenzoic acid and by nitrogen using nitrosobenzene. [Pg.142]

Furan-2-carbonyl chloride, 5-alkyl-3,4-dichloro-synthesis, 4, 690 Furancarboxamides rotational isomerism, 4, 543 Furan-2-carboxylic acid, 5-acetylamino-ethyl ester reactions, 4, 647 Furan-2-carboxylic acid, amino-properties, 4, 708 Furan-2-carboxylic acid, 5-bromo-nitration, 4, 603, 711 Furan-2-carboxylic acid, 3-methyl-methyl ester bromination, 4, 604 Furan-2-carboxylic acid, 5-methyl-nitration, 4, 602... [Pg.632]

Furfural — see Furan-2-oarbaldehyde, 532 Furfuryl acetate, o -(butoxycarbonyl)-anodic oxidation, 1, 424 Furfuryi acrylate polymerization, 1, 279 Furfuryl alcohol configuration, 4, 544 2-Furfuryl alcohol polyoondensation, 1, 278 reactions, 4, 70-71 Furfuryl alcohol, dihydro-pyran-4-one synthesis from, 3, 815 Furfuryl alcohol, tetrahydro-polymers, 1, 276 rearrangement, 3, 773 Furfuryl chloride reactions... [Pg.637]

Examples of mono-layer adsorption isotherms obtained for chloroform and butyl chloride are shown in Figure 5. The adsorption isotherms of the more polar solvents, ethyl acetate, isopropanol and tetrahydro-furan from -heptane solutions on silica gel were examined by Scott and Kucera [4]. Somewhat surprisingly, it was found that the experimental results for the more polar solvents did not fit the simple mono-layer... [Pg.94]

Subsequently, Beals and Brown expanded the scope of the earlier work from their laboratory to include the tetraoxaquaterene derived from furan and 3-pentanone. Using 3,3-difurylpentane and diethyl ketone in the presence of dry hydrogen chloride gas, the all-ethyl analog of 6 (mp 249°) was obtained in 20% yield. ... [Pg.31]

Perfluoroalkanoyl chlorides and anhydrides are also acylating agents Tri-fluoroacetic anhydride acylates a number of pyrroles, thiophenes, and furans without a catalyst [37, 38, 39] AzuUne can be diacylated without a catalyst in 12 h [40] (equation 26). [Pg.415]

Cyclotrithiazyl chloride is also a useful reagent in organic chemistry in the fusion of 1,2,5-thiadiazoles to quinones as well as the synthesis of (a) isothiazoles from 2,5-disubstituted furans and (b) bis-1,2,5-thiadiazoles from A-alkylpyrroles (Scheme 8.4). Alkenes and alkynes react readily with (NSC1)3 to give 1,2,5-thiadiazoles, while 1,4-diphenyl-1,3-butadiene gives a variety of heterocyclic products including a bis(l, 2,5-thiadiazole). ... [Pg.151]

Very little is known concerning the simple, monocyclic 3-hydroxy-furans (cf. reference 15). Both the oxo and hydroxy forms of the substituted 3-hydroxyfurans 26 and 27 (R = H, CcHn) have been isolated/ but the individual tautomers slowly undergo interconversion. The enol forms give a positive reaction with ferric chloride, react rapidly with bromine, and form a peroxide with oxygen. From chemical evidence, the benzo derivatives of 3-hydroxyfuran, 28 and 29, appear to exist predominantly in the oxo form, and this is further supported by ultraviolet spectral data. Stefanye and Howard- ... [Pg.6]

Esters of diphenylacetic acids with derivatives of ethanol-amine show mainly the antispasmodic component of the atropine complex of biologic activities. As such they find use in treatment of the resolution of various spastic conditions such as, for example, gastrointestinal spasms. The prototype in this series, adiphenine (47), is obtained by treatment of diphenyl acetyl chloride with diethylaminoethanol. A somewhat more complex basic side chain is accessible by an interesting rearrangement. Reductive amination of furfural (42) results in reduction of the heterocyclic ring as well and formation of the aminomethyltetrahydro-furan (43). Treatment of this ether with hydrogen bromide in acetic acid leads to the hydroxypiperidine (45), possibly by the intermediacy of a carbonium ion such as 44. Acylation of the alcohol with diphenylacetyl chloride gives piperidolate (46). ... [Pg.91]

Reaction of the potassium salt of salicylaldehyde with chlo-roacetone affords first the corresponding phenolic ether aldol cyclization of the aldehyde with the ketonic side chain affords the benzofuran (1). Reduction of the carbonyl group by means of the Wolf-Kischner reaction affords 2-ethyl-benzofuran. Friedel-Crafts acylation with anisoyl chloride proceeds on the remaining unsubstituted position on the furan ring (2). The methyl ether is then cleaved by means of pyridine hydrochloride (3). lodina-tion of the phenol is accomplished by means of an alkaline solution of iodine and potassium iodide. There is thus obtained benziodarone (4)... [Pg.314]

Alteration of the structural pattern produces a pair of adrenergic a-blocking agents which serve as anti hypertensives. These structures are reminiscent of prazoci n. Reaction of piperazine with 2-furoy1 chloride followed by catalytic reduction of the furan ring leads to synthon 69. This, when heated... [Pg.194]


See other pages where Furan chloride is mentioned: [Pg.59]    [Pg.507]    [Pg.190]    [Pg.47]    [Pg.70]    [Pg.81]    [Pg.109]    [Pg.120]    [Pg.141]    [Pg.633]    [Pg.733]    [Pg.2252]    [Pg.813]    [Pg.43]    [Pg.139]    [Pg.32]    [Pg.38]    [Pg.44]    [Pg.74]    [Pg.82]    [Pg.161]    [Pg.209]    [Pg.66]    [Pg.105]    [Pg.85]    [Pg.290]    [Pg.140]    [Pg.293]   
See also in sourсe #XX -- [ Pg.116 ]




SEARCH



2.3- Furan dicarbonyl chloride

2.3- Furan dicarbonyl chloride reactions

Furan, 2-trimethylsiloxyaldol condensation tin chloride catalyst

Furans zinc chloride

© 2024 chempedia.info