Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functions important

Since the summation in Eq. (12) may be on any subset of atoms, it can be fine-tuned to best suit the problem at hand. The summation may be over the whole molecule, but it is very common to calculate conformational distances based only on non-hydrogen heavy atoms or, in the case of proteins, even based on only the backbone Ca atoms. Alternatively, in a study related to drug design one may consider, for example, focusing only on atoms that make up the pharmacophore region or that are otherwise known to be functionally important. [Pg.84]

Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)... Figure 1.9 Examples of functionally important intrinsic metal atoms in proteins, (a) The di-iron center of the enzyme ribonucleotide reductase. Two iron atoms form a redox center that produces a free radical in a nearby tyrosine side chain. The iron atoms are bridged by a glutamic acid residue and a negatively charged oxygen atom called a p-oxo bridge. The coordination of the iron atoms is completed by histidine, aspartic acid, and glutamic acid side chains as well as water molecules, (b) The catalytically active zinc atom in the enzyme alcohol dehydrogenase. The zinc atom is coordinated to the protein by one histidine and two cysteine side chains. During catalysis zinc binds an alcohol molecule in a suitable position for hydride transfer to the coenzyme moiety, a nicotinamide, [(a) Adapted from P. Nordlund et al., Nature 345 593-598, 1990.)...
Many proteins contain intrinsic metal atoms that are functionally important. The most frequently used metals are iron, zinc, magnesium, and calcium. These metal atoms are mainly bound to the protein through the side chains of cysteine, histidine, aspartic acid, and glutamic acid residues. [Pg.12]

From a map at low resolution (5 A or higher) one can obtain the shape of the molecule and sometimes identify a-helical regions as rods of electron density. At medium resolution (around 3 A) it is usually possible to trace the path of the polypeptide chain and to fit a known amino acid sequence into the map. At this resolution it should be possible to distinguish the density of an alanine side chain from that of a leucine, whereas at 4 A resolution there is little side chain detail. Gross features of functionally important aspects of a structure usually can be deduced at 3 A resolution, including the identification of active-site residues. At 2 A resolution details are sufficiently well resolved in the map to decide between a leucine and an isoleucine side chain, and at 1 A resolution one sees atoms as discrete balls of density. However, the structures of only a few small proteins have been determined to such high resolution. [Pg.382]

The original monoamine hypothesis of depression states that depressions are associated with a deficiency of catecholamines, particularly norepinephrine, at functionally important adrenergic receptor sites in the brain. Elation conversely may be associated with an excess of such amines. The hypothesis was articulated in 1966 only after the mechanism of action of the tricyclic antidepressant desipramine and of the psychostimulants... [Pg.840]

To prevent insolubility resulting from uncontrolled aggregation of extended strands, two adjacent parallel or antiparallel yS-peptide strands can be connected with an appropriate turn segment to form a hairpin. The / -hairpin motif is a functionally important secondary structural element in proteins which has also been used extensively to form stable and soluble a-peptide y9-sheet arrangements in model systems (for reviews, see [1, 4, 5] and references therein). The need for stable turns that can bring the peptide strands into a defined orientation is thus a prerequisite for hairpin formation. For example, type F or II" turns formed by D-Pro-Gly and Asn-Gly dipeptide sequences have been found to promote tight a-pep-tide hairpin folding in aqueous solution. Similarly, various connectors have been... [Pg.77]

We have sequenced RpII and studied the structures of RpII and RpIII in solution by 2D-NMR and distance geometry methods. The resonances are almost completely assigned, and secondary and tertiary structures have been determined. Our results indicate that Rp toxins have a four strand anti-parallel )9-sheet and no a-helix. Functionally important residues are found to be located in looped regions of the... [Pg.302]

Piga, A., Cactus pear a fruit of nutraceutical and functional importance, J. Profess. [Pg.295]

In this chapter we will review the recent investigations of the structure of both the a and P subunit, and the function of gastric H,K-ATPase. We will proceed from a brief overview of the tissue distribution to a successive discussion of structure, kinetics, transport properties, lipid dependency, solubilization and reconstitution, and inhibitors of H,K-ATPase that may label functionally important domains of the enzyme. [Pg.28]

The rate of phosphoprotein formation in the presence of 5 mM CaCl2 was only slightly affected by mild photooxidation in the presence of Rose Bengal, but the hydrolysis of phosphoenzyme intermediate was inhibited sufficiently to account for the inhibition of ATP hydrolysis [359]. The extent of inhibition was similar whether the turnover of E P was followed after chelation of Ca with EGTA, or after the addition of large excess of unlabeled ATP. These observations point to the participation of functionally important histidine residues in the hydrolysis of phosphoprotein intermediate [359]. [Pg.95]

An affinity label is a molecule that contains a functionality that is chemically reactive and will therefore form a covalent bond with other molecules containing a complementary functionality. Generally, affinity labels contain electrophilic functionalities that form covalent bonds with protein nucleophiles, leading to protein alkylation or protein acylation. In some cases affinity labels interact selectively with specific amino acid side chains, and this feature of the molecule can make them useful reagents for defining the importance of certain amino acid types in enzyme function. For example, iodoacetate and A-ethyl maleimide are two compounds that selectively modify the sulfur atom of cysteine side chains. These compounds can therefore be used to test the functional importance of cysteine residues for an enzyme s activity. This topic is covered in more detail below in Section 8.4. [Pg.219]

FIGURE 2.1 A side view of the structure of the prototype G-protein-coupled, 7TM receptor rhodopsin. The x-ray structure of bovine rhodopsin is shown with horizontal gray lines, indicating the limits of the cellular lipid membrane. The retinal ligand is shown in a space-filling model as the cloud in the middle of the structure. The seven transmembrane (7TM) helices are shown in solid ribbon form. Note that TM-III is rather tilted (see TM-III at the extracellular and intracellular end of the helix) and that kinks are present in several of the other helices, such as TM-V (to the left), TM-VI (in front of the retinal), and TM-VII. In all of these cases, these kinks are due to the presence of a well-conserved proline residue, which creates a weak point in the helical structure. These kinks are believed to be of functional importance in the activation mechanism for 7TM receptors in general. Also note the amphipathic helix-VIII which is located parallel to the membrane at the membrane interface. [Pg.85]

Conserved Proline Residues in the Transmembranes May Be of Functional Importance... [Pg.90]


See other pages where Functions important is mentioned: [Pg.2500]    [Pg.2503]    [Pg.2991]    [Pg.214]    [Pg.462]    [Pg.89]    [Pg.184]    [Pg.348]    [Pg.285]    [Pg.102]    [Pg.205]    [Pg.364]    [Pg.302]    [Pg.856]    [Pg.867]    [Pg.1232]    [Pg.217]    [Pg.202]    [Pg.352]    [Pg.128]    [Pg.609]    [Pg.302]    [Pg.211]    [Pg.110]    [Pg.96]    [Pg.264]    [Pg.20]    [Pg.64]    [Pg.148]    [Pg.175]    [Pg.353]    [Pg.55]    [Pg.130]    [Pg.103]    [Pg.138]    [Pg.88]    [Pg.124]    [Pg.250]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Biological importance, functional groups

Biologically important amines functional groups

Birth importance function

Collision importance function

Correlation functions importance

Fission importance function

Flux importance function

Functional Properties of Cosmetically Important Compounds

Functional group importance

Functional groups, organic list of important

Functional interface, importance

Green function importance sampling

Importance and General Function

Importance functions

Importance of functional groups in determining drug actions and toxicity

Importance of functionalization

Important Families of Functions

Important Inequalities Among Viscoelastic Functions

Industrial Important Silicon-functional Organo-Silanes

Oligomerization, functional importance

Some Important Theorems for Distribution Functions

Some other definitions of important thermodynamic functions

The Importance of Alkaloidal Functions

The Importance of Hydrogen Bonds in Biological Structure and Function

Traditional Chinese medicine important functions

© 2024 chempedia.info