Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlation functions importance

The structure of a fluid is characterized by the spatial and orientational correlations between atoms and molecules detemiiued through x-ray and neutron diffraction experiments. Examples are the atomic pair correlation fiinctions (g, g. . ) in liquid water. An important feature of these correlation functions is that... [Pg.437]

The disadvantage of ah initio methods is that they are expensive. These methods often take enormous amounts of computer CPU time, memory, and disk space. The HF method scales as N, where N is the number of basis functions. This means that a calculation twice as big takes 16 times as long (2" ) to complete. Correlated calculations often scale much worse than this. In practice, extremely accurate solutions are only obtainable when the molecule contains a dozen electrons or less. However, results with an accuracy rivaling that of many experimental techniques can be obtained for moderate-size organic molecules. The minimally correlated methods, such as MP2 and GVB, are often used when correlation is important to the description of large molecules. [Pg.28]

Eq. (101) is the multidensity Ornstein-Zernike equation for the bulk, one-component dimerizing fluid. Eqs. (102) and (103) are the associative analog of the singlet equation (31). The last equation of the set, Eq. (104), describes the correlations between two giant particles and may be important for theories of colloid dispersions. The partial correlation functions yield three... [Pg.205]

The structure of the chapter is as follows. First, we start with a brief introduction of the important theoretical developments and relevant interesting experimental observations. In Sec. 2 we present fundamental relations of the liquid-state replica methodology. These include the definitions of the partition function and averaged grand thermodynamic potential, the fluctuations in the system and the correlation functions. In the second part of... [Pg.293]

The correlation functions of the partly quenched system satisfy a set of replica Ornstein-Zernike equations (21)-(23). Each of them is a 2 x 2 matrix equation for the model in question. As in previous studies of ionic systems (see, e.g.. Refs. 69, 70), we denote the long-range terms of the pair correlation functions in ROZ equations by qij. Here we apply a linearized theory and assume that the long-range terms of the direct correlation functions are equal to the Coulomb potentials which are given by Eqs. (53)-(55). This assumption represents the mean spherical approximation for the model in question. Most importantly, (r) = 0 as mentioned before, the particles from different replicas do not interact. However, q]f r) 7 0 these functions describe screening effects of the ion-ion interactions between ions from different replicas mediated by the presence of charged obstacles, i.e., via the matrix. The functions q j (r) need to be obtained to apply them for proper renormalization of the ROZ equations for systems made of nonpoint ions. [Pg.338]

The above results show that the structure of the system with the molecules self-assembled into the internal films is determined by their correlation functions. In contrast to simple fluids, the four-point correlation functions are as important as the two-point correlation functions for the description of the structure in this case. The oil or water domain size is related to the period of oscillations A of the two-point functions. The connectivity of the oil and water domains, related to the sign of K, is determined by the way four moleeules at distanees eomparable to their sizes are eorrelated. For > 0 surfactant molecules are correlated in such a way that preferred orientations... [Pg.736]

The most important result of this work is that despite two different SRO patterns, we have found concentration independent EPI. The evolution of the diffuse intensity with composition is thus mainly due to the sensitivity of the equilibrium state (i.e. the correlation function) to the concentration. [Pg.36]

Of course, knowledge of the entire spectrum does provide more information. If the shape of the wings of G (co) is established correctly, then not only the value of tj but also angular momentum correlation function Kj(t) may be determined. Thus, in order to obtain full information from the optical spectra of liquids, it is necessary to use their periphery as well as the central Lorentzian part of the spectrum. In terms of correlation functions this means that the initial non-exponential relaxation, which characterizes the system s behaviour during free rotation, is of no less importance than its long-time exponential behaviour. Therefore, we pay special attention to how dynamic effects may be taken into account in the theory of orientational relaxation. [Pg.63]

With the advent of extremely large aperture telescopes, there is a growing interest in the statistical properties of the field emitted by astronomical sources (Dravins, 2001). The goal is to obtain important physical information concerning the source by looking at the statistical characteristics of the light it emits. This domain was pioneered by two radio astronomers, Hanbury Brown and Twiss (1956) who measured the intensity correlation function + r))... [Pg.351]

Here the vector rj represents the centre of mass position, and D is usually averaged over several time origins to to improve statistics. Values for D can be resolved parallel and perpendicular to the director to give two components (D//, Dj ), and actual values are summarised for a range of studies in Table 3 of [45]. Most studies have found diffusion coefficients in the 10 m s range with the ratio D///Dj between 1.59 and 3.73 for calamitic liquid crystals. Yakovenko and co-workers have carried out a detailed study of the reorientational motion in the molecule PCH5 [101]. Their results show that conformational molecular flexibility plays an important role in the dynamics of the molecule. They also show that cage models can be used to fit the reorientational correlation functions of the molecule. [Pg.59]

The approach to the evaluation of vibrational spectra described above is based on classical simulations for which quantum corrections are possible. The incorporation of quantum effects directly in simulations of large molecular systems is one of the most challenging areas in theoretical chemistry today. The development of quantum simulation methods is particularly important in the area of molecular spectroscopy for which quantum effects can be important and where the goal is to use simulations to help understand the structural and dynamical origins of changes in spectral lineshapes with environmental variables such as the temperature. The direct evaluation of quantum time- correlation functions for anharmonic systems is extremely difficult. Our initial approach to the evaluation of finite temperature anharmonic effects on vibrational lineshapes is derived from the fact that the moments of the vibrational lineshape spectrum can be expressed as functions of expectation values of positional and momentum operators. These expectation values can be evaluated using extremely efficient quantum Monte-Carlo techniques. The main points are summarized below. [Pg.93]

The correlator (6) is of the utmost importance because its generating function enters into an expression which describes the angular dependence of intensity of scattering of light or neutrons [3]. It is natural to extend expression (6) for the two-point chemical correlation function by introducing the w-point correlator ya1... (kl...,kn l) which equals the joint probability of finding in a macromolecule n monomeric units Maj.Ma> divided by (n-1) arbitrary sequences... [Pg.167]


See other pages where Correlation functions importance is mentioned: [Pg.340]    [Pg.172]    [Pg.3141]    [Pg.340]    [Pg.172]    [Pg.3141]    [Pg.245]    [Pg.2365]    [Pg.103]    [Pg.390]    [Pg.390]    [Pg.154]    [Pg.419]    [Pg.420]    [Pg.423]    [Pg.438]    [Pg.169]    [Pg.350]    [Pg.737]    [Pg.446]    [Pg.119]    [Pg.153]    [Pg.195]    [Pg.285]    [Pg.377]    [Pg.3]    [Pg.3]    [Pg.46]    [Pg.48]    [Pg.79]    [Pg.217]    [Pg.33]    [Pg.91]    [Pg.101]    [Pg.54]    [Pg.268]    [Pg.181]    [Pg.65]    [Pg.69]    [Pg.83]    [Pg.101]    [Pg.131]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Functions important

© 2024 chempedia.info