Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functionalization diels—alder reactions

Tran orm-based or long-range strategies The retrosynthetic analysis is directed toward the application of powerful synthesis transforms. Functional groups are introduced into the target compound in order to establish the retion of a certain goal transform (e.g., the transform for the Diels-Alder reaction, Robinson annulation, Birch reduction, halolactonization, etc.). [Pg.575]

Hydrogen bonding of water to the activating group of (for normal-electron demand Diels-Alder reactions) the dienophile constitutes the second important effect". Hydrogen bonds strengthen the electron-withdrawing capacity of this functionality and thereby decrease the HOMO-LUMO gap... [Pg.43]

Furthermore, the number of diene - dienoplrile combinations that can be expected to undergo a Lewis-acid catalysed Diels-Alder reaction is limited. Studies by Wijnen leave little doubt that the rate of typical Diels-Alder reactions, where the dienophile is activated by one or more carbonyl functionalities, does not respond to the presence of Lewis acids in aqueous solution , at least not beyond the extent that is expected for non-specific interactions (salt effects). No coordination of the Lewis acid to the dienophile was observed in these cases, which is perhaps not surprising. Water is... [Pg.48]

Figure 2.2. Second-order rate constant for the Diels-Alder reaction of 2.4a with 2.5 in aqueous solution as a function of the concentrations of copper(II)ni trate. Figure 2.2. Second-order rate constant for the Diels-Alder reaction of 2.4a with 2.5 in aqueous solution as a function of the concentrations of copper(II)ni trate.
Figure 3.3. Enantiomeric excess of the Diels-Alder reaction of 3.8c with 3.9 as a function of the pH. Figure 3.3. Enantiomeric excess of the Diels-Alder reaction of 3.8c with 3.9 as a function of the pH.
In a second attempt to extend the scope of Lewis-acid catalysis of Diels-Alder reactions in water, we have used the Mannich reaction to convert a ketone-activated monodentate dienophile into a potentially chelating p-amino ketone. The Mannich reaction seemed ideally suited for the purpose of introducing a second coordination site on a temporary basis. This reaction adds a strongly Lewis-basic amino functionality on a position p to the ketone. Moreover, the Mannich reaction is usually a reversible process, which should allow removal of the auxiliary after the reaction. Furthermore, the reaction is compatible with the use of an aqueous medium. Some Mannich reactions have even been reported to benefit from the use of water ". Finally, Lewis-acid catalysis of Mannich-type reactions in mixtures of organic solvents and water has been reported ". Hence, if both addition of the auxiliary and the subsequent Diels-Alder reaction benefit from Lewis-acid catalysis, the possibility arises of merging these steps into a one-pot procedure. [Pg.114]

In Diels-Alder reactions a nitroolefin may function as an electron-deficient ene com-onent or a 1,2-dihydropyridine derivative may be used as a diene component. Both types of iactants often yield cyclic amine precursors in highly stereoselective manner (R.K. Hill, 1962 i. BOchi, 1965, 1966A). [Pg.297]

The importance of the Diels-Alder reaction is in synthesis It gives us a method to form two new carbon-carbon bonds m a single operation and requires no reagents such as acids or bases that might affect other functional groups m the molecule... [Pg.411]

The balance between aromatic and aUphatic reactivity is affected by the type of substituents on the ring. Furan functions as a diene in the Diels-Alder reaction. With maleic anhydride, furan readily forms 7-oxabicyclo [2.2.1]hept-5-ene-2,3-dicarboxyhc anhydride in excellent yield [5426-09-5] (4). [Pg.74]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Maleic anhydride has been used in many Diels-Alder reactions (29), and the kinetics of its reaction with isoprene have been taken as proof of the essentially transoid stmcture of isoprene monomer (30). The Diels-Alder reaction of isoprene with chloromaleic anhydride has been analy2ed using gas chromatography (31). Reactions with other reactive hydrocarbons have been studied, eg, the reaction with cyclopentadiene yields 2-isopropenylbicyclo[2.2.1]hept-5-ene (32). Isoprene may function both as diene and dienophile in Diels-Alder reactions to form dimers. [Pg.463]

Benzo[Z)]furans and indoles do not take part in Diels-Alder reactions but 2-vinyl-benzo[Z)]furan and 2- and 3-vinylindoles give adducts involving the exocyclic double bond. In contrast, the benzo[c]-fused heterocycles function as highly reactive dienes in [4 + 2] cycloaddition reactions. Thus benzo[c]furan, isoindole (benzo[c]pyrrole) and benzo[c]thiophene all yield Diels-Alder adducts (137) with maleic anhydride. Adducts of this type are used to characterize these unstable molecules and in a similar way benzo[c]selenophene, which polymerizes on attempted isolation, was characterized by formation of an adduct with tetracyanoethylene (76JA867). [Pg.67]

Oxidation of thiophene with peracid under carefully controlled conditions gives a mixture of thiophene sulfoxide and 2-hydroxythiophene sulfoxide. These compounds are trapped by addition to benzoquinone to give ultimately naphthoquinone (225) and its 5-hydroxy derivative (226) (76ACS(B)353). The further oxidation of the sulfoxide yields the sulfone, which may function as a diene or dienophile in the Diels-Alder reaction (Scheme 88). An azulene synthesis involves the addition of 6-(A,A-dimethylamino)fulvene (227) to a thiophene sulfone (77TL639, 77JA4199). [Pg.84]

One of the features of Diels-Alder reactions with most alkyl and aryl nitriles that has made them rather unattractive as dienophiles is the requirement of very high reaction temperatures Again, only when electron-withdrawing substituents are directly bonded to the nitnle function do [4+2] cycloaddition reactions occur at reasonably low temperatures [ 48, 231, 232] A high yield [4+2] cycloaddition was observed on reaction of 4,4-bis(trifluoromethyl) 1 thia-3-aza-l,3-butadienes with trifluoroacetonitrile at 150 °C [225]... [Pg.871]

A great advantage of catalyst 24b compared with other chiral Lewis acids is that it tolerates the presence of ester, amine, and thioether functionalities. Dienes substituted at the 1-position by alkyl, aryl, oxygen, nitrogen, or sulfur all participate effectively in the present asymmetric Diels-Alder reaction, giving adducts in over 90% ee. The reaction of l-acetoxy-3-methylbutadiene and acryloyloxazolidinone catalyzed by copper reagent 24b, affords the cycloadduct in 98% ee. The first total synthesis of ewt-J -tetrahydrocannabinol was achieved using the functionalized cycloadduct obtained [23, 33e] (Scheme 1.39). [Pg.29]

For the construction of oxygen-functionalized Diels-Alder products, Narasaka and coworkers employed the 3-borylpropenoic acid derivative in place of 3-(3-acet-oxypropenoyl)oxazolidinone, which is a poor dienophile in the chiral titanium-catalyzed reaction (Scheme 1.55, Table 1.24). 3-(3-Borylpropenoyl)oxazolidinones react smoothly with acyclic dienes to give the cycloadducts in high optical purity [43]. The boryl group was converted to an hydroxyl group stereospecifically by oxidation, and the alcohol obtained was used as the key intermediate in a total synthesis of (-i-)-paniculide A [44] (Scheme 1.56). [Pg.36]

The basic concept of activation in hetero-Diels-Alder reactions is to utilize the lone-pair electrons of the carbonyl and imine functionality for coordination to the Lewis acid. The coordination of the dienophile to the Lewis acid changes the FMOs of the dienophile and for the normal electron-demand reactions a decrease of the LUMO and HOMO energies is observed leading to a better interaction with... [Pg.314]

The hetero-Diels-Alder reaction of aldehydes 12 with 2-azabutadienes 13 (Scheme 8.5) has been studied using high-level ab-initio multiconfigurational molecular orbital and density functionality calculation methods [28]. [Pg.318]

Functionalized nitroalkenes are important chenophiles in the Diels-Alder ri example, fE -methyl fi-nitroactylate is an impottant reagent in organic synthesis The nitre group can be readily eliminated the Diels-Alder reaction of fi-nitroactylate is equivalent to that of ethyl propiolate with an inverse regiochemistry fEq. 8.4. ... [Pg.234]

Removal of the carbonate ring from 7 (Scheme 1) and further functional group manipulations lead to allylic alcohol 8 which can be dissected, as shown, via a retro-Shapiro reaction to give vinyl-lithium 9 and aldehyde 10 as precursors. Vinyllithium 9 can be derived from sulfonyl hydrazone 11, which in turn can be traced back to unsaturated compounds 13 and 14 via a retro-Diels-Alder reaction. In keeping with the Diels-Alder theme, the cyclohexene aldehyde 10 can be traced to compounds 16 and 17 via sequential retrosynthetic manipulations which defined compounds 12 and 15 as possible key intermediates. In both Diels-Alder reactions, the regiochemical outcome is important, and special considerations had to be taken into account for the desired outcome to. prevail. These and other regio- and stereochemical issues will be discussed in more detail in the following section. [Pg.660]

Ethyl H-, 2-diazepine-l-carboxylate functions as a 2 -component in the Diels-Alder reaction with tetrachloro-l,2-benzoquinone to give a mixture of the regioisomers 20 and 21.100... [Pg.345]

The photophysical properties of porphycenes make these structures potential sensitizers for an application in Photodynamic Tumor Therapy (PDT). To improve the photophysical properties and to modify possible biological activity it is necessary to have porphycenes with an extended chromophore and/or with additional functional groups for further modifications. The Diels-Alder reaction of a vinyl porphycene allows for the preparation of benzoporphycenes with an extended chromophore9 and additional functional groups (cf. Section 1.1.2.4.). [Pg.681]

Based on the facile formation and reactivity of323, and the retro Diels-Alder reaction of 325306,310, a simple procedure has been developed for the stereoselective synthesis of functionalized conjugated dienes as well as vinylallenes311 (see equation 119). [Pg.464]

A domino Diels-Alder reaction (the term was chosen from the well-known game) is a one-pot process involving two or more Diels-Alder reactions carried out under the same reaction conditions without adding additional reagents or catalyst such that the second, third, etc., cycloaddition is the consequence of the functionality generated in the previous reaction. A historical example is illustrated in Equation 1.28 [60]. This type of transformation is sometimes named tandem or cascade, but these terms seem less appropriate for describing a time-resolved transformation. [Pg.20]

A tandem Diels-Alder reaction (the term refers to two operating units that are distinct but working at the same time) would indicate a process involving two distinct Diels-Alder reactions working at the same time (Equation 1.29) [6], and a cascade Diels-Alder reaction would refer to a transformation involving at least two Diels-Alder reactions occurring in sequence, without any reference to the fact that the subsequent reaction is the consequence of the functionality generated in the previous reaction (Equation 1.30) [61]. [Pg.21]

Highly functionalized cyclohexenes have been prepared by Diels-Alder reactions of butadienes 1 (Scheme 2.1) and chiral butadienes 2 (Scheme 2.2) with... [Pg.29]


See other pages where Functionalization diels—alder reactions is mentioned: [Pg.221]    [Pg.472]    [Pg.727]    [Pg.221]    [Pg.472]    [Pg.727]    [Pg.631]    [Pg.85]    [Pg.438]    [Pg.174]    [Pg.7]    [Pg.2]    [Pg.73]    [Pg.16]    [Pg.115]    [Pg.56]    [Pg.63]    [Pg.71]    [Pg.519]    [Pg.586]    [Pg.660]    [Pg.671]    [Pg.640]    [Pg.359]    [Pg.32]   
See also in sourсe #XX -- [ Pg.314 , Pg.316 ]




SEARCH



Diels-Alder reaction exohedral functionalization

Diels-Alder reaction masked functionality

Diels-Alder reactions compatible functional

Reaction function

© 2024 chempedia.info