Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional group anhydride

It is convenient to consider the indiflferent or neutral oxygen derivatives of the hydrocarbons—(a) aldehydes and kelones, (b) esters and anhydrides, (c) alcohols and ethers—together. All of these, with the exception of the water-soluble members of low molecular weight, are soluble only in concentrated sulphuric acid, i.e., fall into Solubility Group V. The above classes of compounds must be tested for in the order in which they are listed, otherwise erroneous conclusions may be drawn from the reactions for functional groups about to be described. [Pg.1060]

Many compounds contain more than one functional group Prostaglandin Ei a hormone that regulates the relaxation of smooth muscles con tains two different kinds of carbonyl groups Classify each one (aldehyde ketone carboxylic acid ester amide acyl chloride or acid anhydride) Identify the most acidic proton in prostaglandin Ei and use Table 1 7 to estimate its pK ... [Pg.144]

The chemistry of carboxylic acids is the central theme of this chapter The impor tance of carboxylic acids is magnified when we realize that they are the parent com pounds of a large group of derivatives that includes acyl chlorides acid anhydrides esters and amides Those classes of compounds will be discussed m Chapter 20 Together this chapter and the next tell the story of some of the most fundamental struc tural types and functional group transformations m organic and biological chemistry... [Pg.791]

Carboxylic Acid Functional Group Reactions. Polymerization is avoided by conducting the desired reaction under mild conditions and in the presence of polymeriza tion inhibitors. AcryUc acid undergoes the reactions of carboxyUc acids and can be easily converted to salts, acryhc anhydride, acryloyl chloride, and esters (16—17). [Pg.150]

Functional Group Analysis. The total hydroxyl content of lignin is determined by acetylation with an acetic anhydride—pyridine reagent followed by saponification of the acetate, and followed by titration of the resulting acetic acid with a standard 0.05 W sodium hydroxide solution. Either the Kuhn-Roth (35) or the modified Bethge-Liadstrom (36) procedure may be used to determine the total hydroxyl content. The aUphatic hydroxyl content is determined by the difference between the total and phenoHc hydroxyl contents. [Pg.141]

The common synthetic route to bismaleimides or maleimide functionalized oligomers is the condensation of diamines or amino-terminated oligomers with maleic anhydride. Another possibiUty is the use of an AB-type monomer of the following general formula to build the polymaleimide, where X represents a functional group that can be employed in condensation reactions. [Pg.25]

The other analytical methods necessary to control the typical specification given in Table 5 are, for the most part, common quality-control procedures. When a chemical analysis for purity is desired, acetylation or phthalation procedures are commonly employed. In these cases, the alcohol reacts with a measured volume of either acetic or phthalic anhydride in pyridine solution. The loss in titratable acidity in the anhydride solution is a direct measure of the hydroxyl groups reacting in the sample. These procedures are generally free from interference by other functional groups, but both are affected adversely by the presence of excessive water, as this depletes the anhydride reagent strength to a level below that necessary to ensure complete reaction with the alcohol. Both procedures can be adapted to a semimicro- or even microscale deterrnination. [Pg.413]

However, certain additives can decrease the rate of thermal decomposition [28]. These additives include cyclic sulfates, sulfones, sultones, aliphatic and aromatic anhydrides, and polymers with pendant carboxylic acid functional groups. Most of these materials are latent acids, which decompose on heating in the presence of moisture to form a strong acid, as shown for cyclic sulfate, 9, in Eq. 5. [Pg.860]

During electrochemical fluorination retention of important functional groups or atoms in molecules is essential. Acyl fluorides and chlorides, but not carboxylic acids and anhydrides (which decarboxylate), survive perfluorination to the perfluorinated acid fluorides, albeit with some cyclization in longer chain (>C4) species [73]. Electrochemical fluorination of acetyl fluoride produces perfluoro-acetyl fluoride in 36-45% yields [85]. Electrochemical fluorination of octanoyl chloride results in perfluorinated cyclic ethers as well as perfluorinated octanoyl fluonde. Cyclization decreases as initial substrate concentration increases and has been linked to hydrogen-bonded onium polycations [73]. Cyclization is a common phenomenon involving longer (>C4) and branched chains. a-Alkyl-substituted carboxylic acid chlorides, fluorides, and methyl esters produce both the perfluorinated cyclic five- and six-membered ring ethers as well as the perfluorinated acid... [Pg.113]

Two different sets of experimental conditions have been used. Buu-Hoi et al. and Hansen have employed the method introduced by Papa et using Raney nickel alloy directly for the desulfurization in an alkaline medium. Under these conditions most functional groups are removed and this method is most convenient for the preparation of aliphatic acids. The other method uses Raney nickel catalysts of different reactivity in various solvents such as aqueous ammonia, alcohol, ether, or acetone. The solvent and activity of the catalyst can have an appreciable influence on yields and types of compounds formed, but have not yet been investigated in detail. In acetic anhydride, for instance, desulfurization of thiophenes does not occur and these reaction conditions have been employed for reductive acetylation of nitrothiophenes. Even under the mildest conditions, all double bonds are hydrogenated and all halogens removed. Nitro and oxime groups are reduced to amines. [Pg.108]

Ill spectroscopy is a valuable tool for the structural analysis of acid derivatives. Acid chlorides, anhydrides, esters, and amides all show characteristic IR absorptions that can be used to identify these functional groups. [Pg.826]

Acid anhydride (Section 21.1) A functional group with two acyl groups bonded to a common oxygen atom, RC02C0R. ... [Pg.1234]

Common chemistries include tannins and lignins but also more modem polyacrylates and derivatives, which often act as carriers for specific functional groups and provide novel chemistry molecules. The polyacrylates may also be copolymerized, perhaps with maleates [maleic anhydride, cis-butenedioic anhydride (OCOCHrCHCO) is the usual starting point material], styrene (vinylbenzene, phenylethylene,... [Pg.443]

Alkenes can add to double bonds in a reaction different from those discussed in 15-19, which, however, is still formally the addition of RH to a double bond. This is called the ene reaction or the ene synthesis For the reaction to proceed without a catalyst, one of the components must be a reactive dienophile (see 15-58 for a definition of this word) such as maleic anhydride, but the other (which supplies the hydrogen) may be a simple alkene such as propene. Cyclopropene has also been used. ° The reaction is compatible with a variety of functional groups that can be appended to the ene and dienophile. N,N-Diallyl amides give an ene cyclization. [Pg.1021]

The last topic to be treated is unequal reactivity by substitution effects. As a first example, the effect of an infinitely negative substitution effect in C due to a reaction with an h group (so I CD Kqj = 0) is compared with the case of equal (random) reactivity of the two functional groups in C for formulation F40. This is suggested as an example of polyesterification with an anhydride and a carboxylic acid, respectively. Figure 15 gives the dramatic effect on... [Pg.220]

Each functional group of an amino acid exhibits all of its characteristic chemical reactions. For carboxylic acid groups, these reactions include the formation of esters, amides, and acid anhydrides for amino groups, acylation, amidation, and esterification and for —OH and —SH groups, oxidation and esterification. The most important reaction of amino acids is the formation of a peptide bond (shaded blue). [Pg.18]

Bismuth(III) triflate is also a powerful acylation catalyst that catalyzes reactions with acetic anhydride and other less reactive anhydrides such as benzoic and pivalic anhydrides.113 Good results are achieved with tertiary and hindered secondary alcohols, as well as with alcohols containing acid- and base-sensitive functional groups. [Pg.246]


See other pages where Functional group anhydride is mentioned: [Pg.1014]    [Pg.337]    [Pg.84]    [Pg.320]    [Pg.495]    [Pg.498]    [Pg.415]    [Pg.212]    [Pg.48]    [Pg.148]    [Pg.219]    [Pg.1069]    [Pg.357]    [Pg.9]    [Pg.263]    [Pg.140]    [Pg.53]    [Pg.15]    [Pg.1014]    [Pg.639]    [Pg.763]    [Pg.435]    [Pg.581]    [Pg.960]    [Pg.216]    [Pg.1335]    [Pg.246]    [Pg.300]   
See also in sourсe #XX -- [ Pg.14 , Pg.15 ]




SEARCH



Anhydride groups

Trifluoroacetic anhydride functionalizing alcohol groups

© 2024 chempedia.info