Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Functional group, aliphatic

Aliphatic and Aromatic Functional Groups Aliphatic Functional Groups... [Pg.61]

FIGURE 6.9. Overall structure of lignin. Major functional groups aliphatic OH, phenolic OH, methoxyl, carbonyl and guaiacyl groups. [Pg.150]

Of the general formula, R - S — H, where R represents an aliphatic or cyclic radical, the thiols —also known as mercaptans— are acidic in behavior owing to their S—H functional group they are corrosive and malodorous. Their concentration in crude oils is very low if not zero, but they are created from other sulfur compounds during refining operations and show up in the light cuts, as illustrated in Table 8.6. [Pg.322]

The reactivity of alkylthiazoles possessing a functional group linked to the side-chain is discussed here neither in detail nor exhaustively since it is analogous to that of classical aliphatic and aromatic compounds. These reactions are essentially of a synthetic nature. In fact, the cyclization methods discussed in Chapter II lead to thiazoles possessing functional groups on the alkyl chain if the aliphatic compounds to be cyclized, carrying the substituent on what will become the alkyl side chain, are available. If this is not the case, another functional substituent can be introduced on the side-chain by cyclization and can then be converted to the desired substituent by a classical reaction. [Pg.340]

Cyclization of Aliphatic Precursors. This strategy consists of assembling the key functional groups in an aUphatic format, cyclizing to a cyclopentane intermediate, and completing the synthesis by further elaboration of the side chains. One appHcation of this strategy is as follows ... [Pg.163]

Other functional groups that are easily differentiated are cyanide (5c =110-120) from isocyanide (5c = 135- 150), thiocyanate (5c =110-120) from isothiocyanate (5c = 125 - 140), cyanate (5c = 105- 120) from isocyanate (5c = 120- 135) and aliphatic C atoms which are bonded to different heteroatoms or substituents (Table 2.2). Thus ether-methoxy generally appears between 5c = 55 and 62, ester-methoxy at 5c = 52 N-methyl generally lies between 5c = 30 and 45 and. S-methyl at about 5c = 25. However, methyl signals at 5c = 20 may also arise from methyl groups attached to C=X or C=C double bonds, e.g. as in acetyl, C//j-CO-. [Pg.12]

However, certain additives can decrease the rate of thermal decomposition [28]. These additives include cyclic sulfates, sulfones, sultones, aliphatic and aromatic anhydrides, and polymers with pendant carboxylic acid functional groups. Most of these materials are latent acids, which decompose on heating in the presence of moisture to form a strong acid, as shown for cyclic sulfate, 9, in Eq. 5. [Pg.860]

Two different sets of experimental conditions have been used. Buu-Hoi et al. and Hansen have employed the method introduced by Papa et using Raney nickel alloy directly for the desulfurization in an alkaline medium. Under these conditions most functional groups are removed and this method is most convenient for the preparation of aliphatic acids. The other method uses Raney nickel catalysts of different reactivity in various solvents such as aqueous ammonia, alcohol, ether, or acetone. The solvent and activity of the catalyst can have an appreciable influence on yields and types of compounds formed, but have not yet been investigated in detail. In acetic anhydride, for instance, desulfurization of thiophenes does not occur and these reaction conditions have been employed for reductive acetylation of nitrothiophenes. Even under the mildest conditions, all double bonds are hydrogenated and all halogens removed. Nitro and oxime groups are reduced to amines. [Pg.108]

Most functional groups do not interfere with the diazotization reaction. Since aliphatic amines are stronger bases and therefore completely protonated at a pH < 3, it is possible that an aromatic amino group is converted into a diazonium group, while an aliphatic amino group present in the same substrate molecule is protected as ammonium ion and does not react. ... [Pg.88]

Suitable starting materials for the Kolbe electrolytic synthesis are aliphatic carboxylic acids that are not branched in a-position. With aryl carboxylic acids the reaction is not successful. Many functional groups are tolerated. The generation of the desired radical species is favored by a high concentration of the carboxylate salt as well as a high current density. Product distribution is further dependend on the anodic material, platinum is often used, as well as the solvent, the temperature and the pH of the solution." ... [Pg.184]

The aromatic portion of the molecules discussed in this chapter is frequently, if not always, an essential contributor to the intensity of their pharmacological action. It is, however, usually the aliphatic portion that determines the nature of that action. Thus it is a common observation in the practice Ilf medicinal chemistry that optimization of potency in these drug classes requires careful attention to the correct spatial orientation of the functional groups, their overall electronic densities, and the contribution that they make to the molecule s solubility in biological fluids. These factors are most conveniently adjusted by altering the substituents on the aromatic ring. [Pg.37]

The reaction capability of PS is weak, but the reaction capability can be improved by anchoring the functional group to the aliphatic chain or aromatic ring of PS using chemical or conversion reactions. Aliphatic chain reactions are halogenation reactions, oxidation reactions, or unsaturated acids to bonded aliphatic chain of PS (in the presence of a radical catalysis). [Pg.259]

Nearly all of the polymers produced by step-growth polymerization contain heteroatoms and/or aromatic rings in the backbone. One exception is polymers produced from acyclic diene metathesis (ADMET) polymerization.22 Hydrocarbon polymers with carbon-carbon double bonds are readily produced using ADMET polymerization techniques. Polyesters, polycarbonates, polyamides, and polyurethanes can be produced from aliphatic monomers with appropriate functional groups (Fig. 1.1). In these aliphatic polymers, the concentration of the linking groups (ester, carbonate, amide, or urethane) in the backbone greatly influences the physical properties. [Pg.4]

The type and nature of the (R) group also has a major influence on the chemical reactivity of the functional group (X) towards the others. Since (R) can be aliphatic or aromatic in nature, the reactivity of the same end group (e.g. —OH), will be quite different depending on the type of the (R) group that is is linked to (e.g. —CH2—OH... [Pg.12]

Aromatic diazonium salts can, of course, be isolated (see Chapter 13), but only a few aliphatic diazonium salts have been prepared (see also Ref. 383). For reviews see Laali, K. Olah, G.A. Rev. Chem. Intermed., 1985, 6, 237 Bott, K. in Patai Rappoport The Chemistry of Functional Groups, Supplement C, pt. 1 Wiley NY, 1983, p. 671 Bott, K. Angew. Chem. Int. Ed. Engl., 1979, 18, 259. The simplest aliphatic diazonium ion CH3N2 has been prepared at — 120°C in superacid solution, where it lived long enough for an nmr spectrum to be taken Berner, D. McGarrity, J.F. J. Am. Chem. Soc., 1979, 101, 3135. [Pg.600]

For a review of selective reduction of aliphatic nitro compounds without disturbance of other functional groups, see Ioffe, S.L. Tartakovskii, V.A. Novikov, S.S. Russ. Chem. Rev., 1966, 35, 19. [Pg.1596]


See other pages where Functional group, aliphatic is mentioned: [Pg.528]    [Pg.23]    [Pg.304]    [Pg.245]    [Pg.528]    [Pg.23]    [Pg.304]    [Pg.245]    [Pg.467]    [Pg.21]    [Pg.561]    [Pg.303]    [Pg.354]    [Pg.82]    [Pg.148]    [Pg.160]    [Pg.29]    [Pg.29]    [Pg.91]    [Pg.820]    [Pg.25]    [Pg.141]    [Pg.315]    [Pg.808]    [Pg.824]    [Pg.100]    [Pg.180]    [Pg.164]    [Pg.168]    [Pg.351]    [Pg.809]    [Pg.1183]    [Pg.1212]    [Pg.1232]    [Pg.1412]    [Pg.49]    [Pg.11]   


SEARCH



Aliphatic alcohols, functional groups

Aliphatic alcohols, functional groups among

Aromatic Linked by Aliphatic or Functional Group

Other Electrophilic Functional Groups on Aliphatic Compounds

© 2024 chempedia.info