Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

From alkene acids

Unsaturated acyliutn ions generated from alkenic acids or anhydrides react with alkenes to produce cy-clopentenones (equation 4i).88.i78-i8i with cycloheptene the major products arise from ring contraction. Again, it is unclear whether these reactions proceed via direct cyclization of (76) or a Nazarov cycliza-tion. [Pg.776]

Unsaturated acylium ions generated from alkenic acids or anhydrides react with alkenes to produce cy-clopentenones (equation with cycloheptene the major products arise from ring contraction. [Pg.776]

We now have a new problem Where does the necessary alkene come from Alkenes are prepared from alcohols by acid catalyzed dehydration (Section 5 9) or from alkyl halides by dehydrohalogenation (Section 5 14) Because our designated starting material is tert butyl alcohol we can combine its dehydration with bromohydrm formation to give the correct sequence of steps... [Pg.266]

The following section describes the preparation of epoxides by the base promoted ring closure of vicinal halohydrms Because vicinal halohydrms are customarily prepared from alkenes (Section 6 17) both methods—epoxidation using peroxy acids and ring closure of halohydrms—are based on alkenes as the starting materials for preparing epoxides... [Pg.676]

Vinyllithium [917-57-7] can be formed direcdy from vinyl chloride by means of a lithium [7439-93-2] dispersion containing 2 wt % sodium [7440-23-5] at 0—10°C. This compound is a reactive intermediate for the formation of vinyl alcohols from aldehydes, vinyl ketones from organic acids, vinyl sulfides from disulfides, and monosubstituted alkenes from organic halides. It can also be converted to vinylcopper [37616-22-1] or divinylcopper lithium [22903-99-7], which can then be used to introduce a vinyl group stereoselectively into a variety of a, P-unsaturated systems (26), or simply add a vinyl group to other a, P-unsaturated compounds to give y, 5-unsaturated compounds. Vinyllithium reagents can also be converted to secondary alcohols with trialkylb o r ane s. [Pg.414]

Two reactions of the non-aromatic 4,4-disubstituted pyrazolones are worthy of mention. Carpino discovered that 4,4-dihalogenopyrazolones (365) and 4-substituted 4-halogenopyrazolones (366) when treated with bases yield a, 8-alkynic and -alkenic acids, respectively (66JOC2867). The reaction proceeds through an oxopyrazolenine (2,3-diazacyc-lopentadienone (367) (B-74M140408). A modification of the experimental procedure transforms (365) into bimanes (368) (82JOC214), which are formed from (367 R = X),... [Pg.250]

Alkenes are reduced by addition of H2 in the presence of a catalyst such as platinum or palladium to yield alkanes, a process called catalytic hydrogenation. Alkenes are also oxidized by reaction with a peroxyacid to give epoxides, which can be converted into lTans-l,2-diols by acid-catalyzed epoxide hydrolysis. The corresponding cis-l,2-diols can be made directly from alkenes by hydroxylation with 0s04. Alkenes can also be cleaved to produce carbonyl compounds by reaction with ozone, followed by reduction with zinc metal. [Pg.246]

The reaction between carbonium ions and carbon monoxide affording oxocarbonium ions (acyl cations) is a key step in the well-known Koch reaction for making carboxylic acids from alkenes, carbon monoxide and water ... [Pg.29]

When double bonds are reduced by lithium in ammonia or amines, the mechanism is similar to that of the Birch reduction (15-14). ° The reduction with trifluoro-acetic acid and EtsSiH has an ionic mechanism, with H coming in from the acid and H from the silane. In accord with this mechanism, the reaction can be applied only to those alkenes that when protonated can form a tertiary carbocation or one stabilized in some other way (e.g., by a OR substitution). It has been shown, by the detection of CIDNP, that reduction of a-methylstyrene by hydridopenta-carbonylmanganese(I) HMn(CO)5 involves free-radical addition. ... [Pg.1008]

There are actually three reactions called by the name Schmidt reaction, involving the addition of hydrazoic acid to carboxylic acids, aldehydes and ketones, and alcohols and alkenes. The most common is the reaction with carboxylic acids, illustrated above.Sulfuric acid is the most common catalyst, but Lewis acids have also been used. Good results are obtained for aliphatic R, especially for long chains. When R is aryl, the yields are variable, being best for sterically hindered compounds like mesi-toic acid. This method has the advantage over 18-13 and 18-14 that it is just one laboratory step from the acid to the amine, but conditions are more drastic. Under the acid conditions employed, the isocyanate is virtually never isolated. [Pg.1413]


See other pages where From alkene acids is mentioned: [Pg.1680]    [Pg.1680]    [Pg.1680]    [Pg.1680]    [Pg.308]    [Pg.323]    [Pg.1]    [Pg.611]    [Pg.1282]    [Pg.1297]    [Pg.156]    [Pg.997]    [Pg.1048]   
See also in sourсe #XX -- [ Pg.1043 , Pg.1680 ]




SEARCH



2-Fluoroalkanoic acids from 1 alkenes

Alkene From acid, one carbon loss

Alkenes acidity

Alkenes amino acid synthesis from

Alkenes from carboxylic acids

Alkenes from dicarboxylic acids

CARBOXYLIC ACIDS FROM OXIDATION OF TERMINAL ALKENES

Carboxylic acids from alkene hydrocarboxylation

Carboxylic acids from ozonolysis of alkene

Carboxylic acids synthesis from alkenes

Carboxylic acids, from acyl alkenes

Ethers, acid cleavage from alkenes

From alkenes

Keto acids from alkenes

Ketone-alkenes, from keto acids

Lactones, from alkene-acids

© 2024 chempedia.info