Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free-radical polymerization copolymers

Copolymers of VDC can also be prepared by methods other than conventional free-radical polymerization. Copolymers have been formed by irradiation and with various organometaHic and coordination complex catalysts (28,44,50—53). Graft copolymers have also been described (54—58). [Pg.430]

Figure 10-25. Glass transition temperatures Tg of free-radically-polymerized copolymers of styrene and acrylic acid (AS), acrylamide (AA), /-butyl acrylate (BA), and butadiene (BU) as a function of the mole fraction Xsty of styrene monomeric units (after K. H. lllers). Figure 10-25. Glass transition temperatures Tg of free-radically-polymerized copolymers of styrene and acrylic acid (AS), acrylamide (AA), /-butyl acrylate (BA), and butadiene (BU) as a function of the mole fraction Xsty of styrene monomeric units (after K. H. lllers).
Polymeric vinylidene chloride generally produced by free radical polymerization of CH2 = CCl2. Homopolymers and copolymers are used. A thermoplastic used in moulding, coatings and fibres. The polymers have high thermal stability and low permeability to gases, and are self extinguishing. [Pg.421]

The elastomer produced in greatest amount is styrene-butadiene rubber (SBR) Annually just under 10 lb of SBR IS produced in the United States and al most all of it IS used in automobile tires As its name suggests SBR is prepared from styrene and 1 3 buta diene It is an example of a copolymer a polymer as sembled from two or more different monomers Free radical polymerization of a mixture of styrene and 1 3 butadiene gives SBR... [Pg.408]

We begin our discussion of copolymers by considering the free-radical polymerization of a mixture of two monomers. Mi and M2. This is already a narrow view of the entire field of copolymers, since more than two repeat units can be present in copolymers and, in addition, mechanisms other than free-radical chain growth can be responsible for copolymer formation. The essential features of the problem are introduced by this simpler special case, so we shall restrict our attention to this system. [Pg.424]

Butenediol does not undergo free-radical polymerization. A copolymer with vinyl acetate can be prepared with a low proportion of butenediol (110). [Pg.107]

Emulsion Adhesives. The most widely used emulsion-based adhesive is that based upon poly(vinyl acetate)—poly(vinyl alcohol) copolymers formed by free-radical polymerization in an emulsion system. Poly(vinyl alcohol) is typically formed by hydrolysis of the poly(vinyl acetate). The properties of the emulsion are derived from the polymer employed in the polymerization as weU as from the system used to emulsify the polymer in water. The emulsion is stabilized by a combination of a surfactant plus a coUoid protection system. The protective coUoids are similar to those used paint (qv) to stabilize latex. For poly(vinyl acetate), the protective coUoids are isolated from natural gums and ceUulosic resins (carboxymethylceUulose or hydroxyethjdceUulose). The hydroHzed polymer may also be used. The physical properties of the poly(vinyl acetate) polymer can be modified by changing the co-monomer used in the polymerization. Any material which is free-radically active and participates in an emulsion polymerization can be employed. Plasticizers (qv), tackifiers, viscosity modifiers, solvents (added to coalesce the emulsion particles), fillers, humectants, and other materials are often added to the adhesive to meet specifications for the intended appHcation. Because the presence of foam in the bond line could decrease performance of the adhesion joint, agents that control the amount of air entrapped in an adhesive bond must be added. Biocides are also necessary many of the materials that are used to stabilize poly(vinyl acetate) emulsions are natural products. Poly(vinyl acetate) adhesives known as "white glue" or "carpenter s glue" are available under a number of different trade names. AppHcations are found mosdy in the area of adhesion to paper and wood (see Vinyl polymers). [Pg.235]

Polymerization of methacrylates is also possible via what is known as group-transfer polymerization. Although only limited commercial use has been made of this technique, it does provide a route to block copolymers that is not available from ordinary free-radical polymerizations. In a prototypical group-transfer polymerization the fluoride-ion-catalyzed reaction of a methacrylate (or acrylate) in the presence of a silyl ketene acetal gives a high molecular weight polymer (45—50). [Pg.247]

The nmr spectmm of PVAc iu carbon tetrachloride solution at 110°C shows absorptions at 4.86 5 (pentad) of the methine proton 1.78 5 (triad) of the methylene group and 1.98 5, 1.96 5, and 1.94 5, which are the resonances of the acetate methyls iu isotactic, heterotactic, and syndiotactic triads, respectively. Poly(vinyl acetate) produced by normal free-radical polymerization is completely atactic and noncrystalline. The nmr spectra of ethylene vinyl acetate copolymers have also been obtained (33). The ir spectra of the copolymers of vinyl acetate differ from that of the homopolymer depending on the identity of the comonomers and their proportion. [Pg.463]

In contrast to ionic chain polymerizations, free radical polymerizations offer a facile route to copolymers ([9] p. 459). The ability of monomers to undergo copolymerization is described by the reactivity ratios, which have been tabulated for many monomer systems for a tabulation of reactivity ratios, see Section 11/154 in Brandrup and Immergut [14]. These tabulations must be used with care, however, as reactivity ratios are not always calculated in an optimum manner [15]. Systems in which one reactivity ratio is much greater than one (1) and the other is much less than one indicate poor copolymerization. Such systems form a mixture of homopolymers rather than a copolymer. Uncontrolled phase separation may take place, and mechanical properties can suffer. An important ramification of the ease of forming copolymers will be discussed in Section 3.1. [Pg.827]

Mixtures of monomers can be used to balance properties. This is possible due to the ease of copolymer formation via free-radical polymerization. The glass transition temperature of acrylic copolymers can be predicted from the weight fraction of the component monomers and the glass transition temperatures of the respective homopolymers [20]. Eq. 3 (commonly known as the Fox equation) is reported ... [Pg.830]

A novel cross-linked polystyrene-divinylbenzene copolymer has been produced from suspension polymerization with toluene as a diluent, having an average particle size of 2 to 50 /rm, with an exclusive molecular weight for the polystyrene standard from about 500 to 20,000 in gel-permeation chromatography. A process for preparing the PS-DVB copolymer by suspension polymerization in the presence of at least one free-radical polymerization initiator, such as 2,2 -azo-bis (2,4-dimethylvaleronitrile) with a half-life of about 2 to 60 min at 70°C, has been disclosed (78). [Pg.22]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

The structure-property relationship of graft copolymers based on an elastomeric backbone poly(ethyl acry-late)-g-polystyrene was studied by Peiffer and Rabeony [321. The copolymer was prepared by the free radical polymerization technique and, it was found that the improvement in properties depends upon factors such as the number of grafts/chain, graft molecular weight, etc. It was shown that mutually grafted copolymers produce a variety of compatibilized ternary component blends. [Pg.641]

Corner, T. Free Radical Polymerization — The Synthesis of Graft Copolymers. Vol. 62, pp. 95— 142. [Pg.151]

Corner, T. Free Radical Polymerization — The Synthesis of Graft Copolymers. Vol. 62, pp. 95-142. Crescenzi, V. Some Recent Studies of Polyelectrolyte Solutions. Vol. 5, pp. 358-386. [Pg.239]

Continuous-flow stirred tank reactors are widely used for free-radical polymerizations. They have two main advantages the solvent or monomer can be boiled to remove the heat of polymerization, and fairly narrow molecular weight and copolymer composition distributions can be achieved. Stirred tanks or... [Pg.492]

Ring-opening polymerization of 2-methylene-l,3-dioxepane (Fig. 6) represents the single example of a free radical polymerization route to PCL (51). Initiation with AIBN at SO C afforded PCL with a of 42,000 in 59% yield. While this monomer is not commercially available, the advantage of this method is that it may be used to obtain otherwise inaccessible copolymers. As an example, copolymerization with vinyl monomers has afforded copolymers of e-caprolactone with styrene, 4-vinylanisole, methyl methacrylate, and vinyl acetate. [Pg.80]

The most common poly(alkenoic acid) used in polyalkenoate, ionomer or polycarboxylate cements is poly(acrylic acid), PAA. In addition, copolymers of acrylic acid with other alkenoic acids - maleic and itaconic and 3-butene 1,2,3-tricarboxylic acid - may be employed (Crisp Wilson, 1974c, 1977 Crisp et al, 1980). These polyacids are prepared by free-radical polymerization in aqueous solution using ammonium persulphate as the initiator and propan-2-ol (isopropyl alcohol) as the chain transfer agent (Smith, 1969). The concentration of poly(alkenoic add) is kept below 25 % to avoid the danger of explosion. After polymerization the solution is concentrated to 40-50 % for use. [Pg.97]

Sulfonated styrene-maleimide copolymers are similarly active [1073], Examples of maleimide monomers are maleimide, N-phenyl maleimide, N-ethyl maleimide, N-(2-chloropropyl) maleimide, and N-cyclohexyl maleimide. N-aryl and substituted aryl maleimide monomers are preferred. The polymers are obtained by free radical polymerization in solution, in bulk, or by suspension. [Pg.312]

Alternating 1 1 copolymers of sodium methallylsulfonate and maleic anhydride are useful as water-soluble dispersants [738]. The copolymers are produced by free radical polymerization in acetic acid solution. Because of... [Pg.312]

We make polyethylene resins using two basic types of chain growth reaction free radical polymerization and coordination catalysis. We use free radical polymerization to make low density polyethylene, ethylene-vinyl ester copolymers, and the ethylene-acrylic acid copolymer precursors for ethylene ionomers. We employ coordination catalysts to make high density polyethylene, linear low density polyethylene, and very low density polyethylene. [Pg.288]


See other pages where Free-radical polymerization copolymers is mentioned: [Pg.146]    [Pg.176]    [Pg.146]    [Pg.176]    [Pg.412]    [Pg.437]    [Pg.318]    [Pg.359]    [Pg.365]    [Pg.379]    [Pg.260]    [Pg.519]    [Pg.539]    [Pg.540]    [Pg.508]    [Pg.748]    [Pg.26]    [Pg.76]    [Pg.147]    [Pg.869]    [Pg.1]    [Pg.110]    [Pg.226]    [Pg.80]    [Pg.459]    [Pg.119]   
See also in sourсe #XX -- [ Pg.113 , Pg.412 ]




SEARCH



Copolymer free-radical

Copolymer radical

Polymerization copolymers

Polymerization free radical

© 2024 chempedia.info