Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fragment radical cation

The major fragmentation pathway of the radical cation 51 generated from the corresponding Czv -symmetrical dithiolane 51 was 1,3-cycloreversion, which led to the generation of two fragments, radical cations 52 and 53 (Scheme 3). The radical cation 54 is present in MS spectra of nearly all dithiolanes of type 51. The radical cation 54 lost the fragments SH or CeHs to form 50 or 55, respectively <2000EJ01695>. [Pg.967]

Although there has been some controversy concerning the processes involved in field ionization mass spectrometry, the general principles appear to be understood. Firstly, the ionization process itself produces little excess of vibrational and rotational energy in the ions, and, consequently, fragmentation is limited or nonexistent. This ionization process is one of the mild or soft methods available for producing excellent molecular mass information. The initially formed ions are either simple radical cations or radical anions (M ). [Pg.25]

The mass spectrum of 2-pyrone shows an abundant molecular ion and a very prominent ion due to loss of CO and formation of the furan radical cation. Loss of CO from 4-pyrone, on the other hand, is almost negligible, and the retro-Diels-Alder fragmentation pathway dominates. In alkyl-substituted 2-pyrones loss of CO is followed by loss of a hydrogen atom from the alkyl substituent and ring expansion of the resultant cation to the very stable pyrylium cation. Similar trends are observed with the benzo analogues of the pyrones, although in some cases both modes of fragmentation are observed. Thus, coumarins. [Pg.22]

Both CSs and CSs were also successfully generated by the fragmentation of ionized 4,5-dioxo-2-thioxo-l,3-dithione (65) and 2-thioxo-l,3-dithiole (66) (90JA3750). Tire three sulfur atoms in the anion and cation radicals were chemically equivalent, suggesting that they take the D h (or C2u) form (67 or 68). On the other hand, under similar conditions, 3-thioxo-1,2-dithiole (69) yielded two isomeric cation radicals the (or 2 ) form and the carbon disulfide 5-sulfide form (70). Ab initio calculations on three electronic states of CS3 at the 6-31G -l-ZPVE level indicated that the C21, form (68) was more stable than the carbon disulfide 5-sulfide form (70) in the neutral (both singlet and triplet states) and the anion radical states, but 68 was less stable than 70 in the radical cation state. [Pg.235]

Sulfonamides are very difficult to hydrolyze. However, a photoactivated reductive method for desulfonylation has been developed.240 Sodium borohydride is used in conjunction with 1,2- or 1,4-dimethoxybenzene or 1,5-dimethoxynaphthalene. The photoexcited aromatic serves as an electron donor toward the sulfonyl group, which then fragments to give the deprotected amine. The NaBH4 reduces the radical cation and the sulfonyl radical. [Pg.271]

Electron ionization (earlier called electron impact) (see Chapter 2, Section 2.1.6) occupies a special position among ionization techniques. Historically it was the first method of ionization in mass spectrometry. Moreover it remains the most popular in mass spectrometry of organic compounds (not bioorganic). The main advantages of electron ionization are reliability and versatility. Besides that the existing computer libraries of mass spectra (Wiley/NIST, 2008) consist of electron ionization spectra. The fragmentation mles were also developed for the initial formation of a radical-cation as a result of electron ionization. [Pg.129]

Fig. 11.2. Diagram of the components of an El source. Gaseous samples (gases or vaporized liquids or solids) are introduced into the ionization chamber using a reservoir with molecular leak, direct insertion probe or as an eluent from a GC column. The collimated stream of 70 eV electrons interacts with the neutral analyte molecules to generate stable radical cations (M+ ) and unstable radical cations (M+ ) that undergo dissociation reactions to form the characteristic fragment ions observed in many El mass spectra. Fig. 11.2. Diagram of the components of an El source. Gaseous samples (gases or vaporized liquids or solids) are introduced into the ionization chamber using a reservoir with molecular leak, direct insertion probe or as an eluent from a GC column. The collimated stream of 70 eV electrons interacts with the neutral analyte molecules to generate stable radical cations (M+ ) and unstable radical cations (M+ ) that undergo dissociation reactions to form the characteristic fragment ions observed in many El mass spectra.
At one time considered as two distinct reactions occurring by different mechanisms [51], the fragmentations of Scheme 2 and the rearrangments of Scheme 5 are now seen as different facets of the same fundamental heterolysis of -substituted alkyl radicals into alkene radical cations, with the eventual outcome determined by the reaction conditions [52],... [Pg.16]


See other pages where Fragment radical cation is mentioned: [Pg.141]    [Pg.141]    [Pg.21]    [Pg.22]    [Pg.23]    [Pg.66]    [Pg.22]    [Pg.820]    [Pg.268]    [Pg.269]    [Pg.20]    [Pg.26]    [Pg.54]    [Pg.56]    [Pg.52]    [Pg.94]    [Pg.53]    [Pg.129]    [Pg.339]    [Pg.469]    [Pg.354]    [Pg.405]    [Pg.13]    [Pg.22]    [Pg.48]    [Pg.75]    [Pg.522]    [Pg.4]    [Pg.229]    [Pg.278]    [Pg.142]    [Pg.129]    [Pg.143]    [Pg.504]    [Pg.331]    [Pg.336]    [Pg.702]    [Pg.713]    [Pg.267]    [Pg.530]    [Pg.36]    [Pg.15]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



A-Fragmentation reactions radical cations

Radical Cation Fragmentation Reactions in Organic Synthesis

Radical cations fragmentation

Radical cations fragmentation

Radical cations fragmentation, thermodynamics

Radicals fragmentation

© 2024 chempedia.info