Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fractional growth

C = consumption rate (tonne year ) r - fractional growth rate (% year ) t = time. Chapter 3 Definition of Stress, Strain, Poisson s Ratio, Elastic Moduli... [Pg.298]

Another measure of the extent of mixing is expressed in terms of the fractional growth in energy transfer efficiaicy [48,52-54], which is given by Equation (14.7),... [Pg.671]

Fractional growth rates (kg) and protein synthesis rates (k ) for various tissues of trout, cod, crab... [Pg.24]

Fryiug fats 90% Polar fraction Growth retardation, slight liver damage Billeketa/. (1983)... [Pg.384]

Figure 4.8 Fraction of amorphous polyethylene as a function of time for crystallizations conducted at indicated temperatures (a) linear time scale and (b) logarithmic scale. Arrows in (b) indicate shifting curves measured at 126 and 130 to 128°C as described in Example 4.4. [Reprinted with permission from R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.) Growth and Perfection of Crystals, Wiley, New York, 1958.]... Figure 4.8 Fraction of amorphous polyethylene as a function of time for crystallizations conducted at indicated temperatures (a) linear time scale and (b) logarithmic scale. Arrows in (b) indicate shifting curves measured at 126 and 130 to 128°C as described in Example 4.4. [Reprinted with permission from R. H. Doremus, B. W. Roberts, and D. Turnbull (Eds.) Growth and Perfection of Crystals, Wiley, New York, 1958.]...
This expression gives the number fraction or mole fraction of n-mers in the polymer and is thus equivalent to Eq. (5.25) for step-growth polymerization. [Pg.383]

Isobutyl alcohol [78-83-1] forms a substantial fraction of the butanols produced by higher alcohol synthesis over modified copper—zinc oxide-based catalysts. Conceivably, separation of this alcohol and dehydration affords an alternative route to isobutjiene [115-11 -7] for methyl /-butyl ether [1624-04-4] (MTBE) production. MTBE is a rapidly growing constituent of reformulated gasoline, but its growth is likely to be limited by available suppHes of isobutylene. Thus higher alcohol synthesis provides a process capable of supplying all of the raw materials required for manufacture of this key fuel oxygenate (24) (see Ethers). [Pg.165]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

Estimates for a number of economic aspects of plasma fractionation can be made (200—206). The world capacity for plasma fractionation exceeded 20,000 t of plasma in 1990 and has increased by about 75% since 1980, with strong growth in the not-for-profit sector (Fig. 4). The quantity of plasma processed in 1993 was about 17,000 t/yr the commercial sector accounts for about 70% of this, with over 8000 t/yr in the form of source plasma from paid donors (Fig. 5). Plant capacities and throughput are usually quoted in terms of principal products, such as albumin and Factor VIII. These figures may not encompass manufacture of other products. [Pg.533]

To confirm that the matrix is amorphous following primary solidification, isothermal dsc experiments can be performed. The character of the isothermal transformation kinetics makes it possible to distinguish a microcrystalline stmcture from an amorphous stmcture assuming that the rate of heat released, dH/dt in an exothermic transformation is proportional to the transformation rate, dxjdt where H is the enthalpy and x(t) is the transformed volume fraction at time t. If microcrystals do exist in a grain growth process, the isothermal calorimetric signal dUldt s proportional to, where ris... [Pg.339]

In an amorphous material, the aUoy, when heated to a constant isothermal temperature and maintained there, shows a dsc trace as in Figure 10 (74). This trace is not a characteristic of microcrystalline growth, but rather can be well described by an isothermal nucleation and growth process based on the Johnson-Mehl-Avrami (JMA) transformation theory (75). The transformed volume fraction at time /can be written as... [Pg.339]

Low temperature (It) tars of Eischer-Tropsch (ET) fractions provide reasonable substrates for growth of yeast for human or animal food supplements. Yeast growth yields were 99.8% (ET fraction), 95.2 and 84.2% (It tar) of those from a petroleum-derived paraffin fraction (63) (see Eoods, nonconventional). [Pg.160]

In equations 8 and 9, is the initiator efficiency, the fraction of initiator radicals that actually initiates chain growth, + k, and is the number of... [Pg.436]

The fatty acids obtained from the process can be used directly or further manipulated for improved or modified performance and stabiUty. Hardening is an operation in which some fraction of the unsaturated bonds present in the fatty acids are eliminated through hydrogenation or the addition of H2 across a carbon—carbon double bond. This process was initially intended to improve the odor and color stabiUty of fatty acids through elimination of the polyunsaturated species. However, with the growth in the use of specialty fatty acids, hydrogenation is a commercially important process to modify the physical properties of the fatty acids. [Pg.155]


See other pages where Fractional growth is mentioned: [Pg.419]    [Pg.235]    [Pg.187]    [Pg.419]    [Pg.235]    [Pg.187]    [Pg.753]    [Pg.292]    [Pg.155]    [Pg.139]    [Pg.455]    [Pg.320]    [Pg.73]    [Pg.531]    [Pg.533]    [Pg.33]    [Pg.335]    [Pg.412]    [Pg.30]    [Pg.114]    [Pg.185]    [Pg.202]    [Pg.511]    [Pg.7]    [Pg.179]    [Pg.437]    [Pg.473]    [Pg.432]    [Pg.193]    [Pg.294]    [Pg.367]    [Pg.50]    [Pg.498]    [Pg.46]    [Pg.357]    [Pg.107]    [Pg.156]    [Pg.171]    [Pg.250]   
See also in sourсe #XX -- [ Pg.27 ]




SEARCH



Growth fraction

© 2024 chempedia.info