Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier - IR spectroscopy

Fourier IR spectroscopy has been exploited for the evaluation of hydrogen-bonding basicity constants (pAThb) in a series of 2-alkyl-5-aryltetrazoles 167 with respect to a reference proton donor (/>-fluorophenol) in tetrachloromethane solution, and also for estimation of some thermodynamic parameters of the equilibrium presented at Equation (15) <2006RJ01059>. The determined pAThb values of tetrazoles 167 fell into the range 0.9-1.4. These compounds... [Pg.304]

By the use of FTIR, it was proved that higher aquatic plants have a capability to respond actively on the water chemical composition changes by the increase of absorption bands intensity related to contaminants. The results of the study show that the Fourier IR spectroscopy may be recommended for the effective application in biomonitoring of contaminated water bodies. [Pg.314]

Anthropogenic pollution Fourier IR spectroscopy Hydrophytic plants Scanning electron microscopy X-ray microanalysis... [Pg.314]

Spectroscopy. Infrared spectroscopy (48) permits stmctural definition, eg, it resolves the 2,2 - from the 2,4 -methylene units in novolak resins. However, the broad bands and severely overlapping peaks present problems. For uncured resins, nmr rather than ir spectroscopy has become the technique of choice for microstmctural information. However, Fourier transform infrared (ftir) gives useful information on curing phenoHcs (49). Nevertheless, ir spectroscopy continues to be used as one of the detectors in the analysis of phenoHcs by gpc. [Pg.299]

Impingement mixing, 200 Implants, bioresorbable, 27 Indentation force deflection (IFD) test, 244 Infrared (IR) spectroscopy, 91, 162, 300, 490. See also Fourier transform infrared (FTIR) spectrometry Ingold s classification, 60-61 Inherent viscosity, 161-162 Injection molding, of polyamides, 136,... [Pg.586]

Spectroscopy, 490. See also 13C NMR spectroscopy FT Raman spectroscopy Fourier transform infrared (FTIR) spectrometry H NMR spectroscopy Infrared (IR) spectroscopy Nuclear magnetic resonance (NMR) spectroscopy Positron annihilation lifetime spectroscopy (PALS) Positron annihilation spectroscopy (PAS) Raman spectroscopy Small-angle x-ray spectroscopy (SAXS) Ultraviolet spectroscopy Wide-angle x-ray spectroscopy (WAXS)... [Pg.601]

Sodium and ammonium lauryl sulfate, sodium lauryl ethoxysulfate, and several shampoos containing these sulfates have been analyzed directly by Fourier transform IR spectroscopy (FTIR) with a special sample cell, called... [Pg.284]

Regarding the characterization of corn cob xylan by Fourier-transform infrared (FT-IR) spectroscopy, two main absorption bands at 3405 cm-i and 1160 cm-i are revealed. They can... [Pg.67]

The basic methods of the identification and study of matrix-isolated intermediates are infrared (IR), ultraviolet-visible (UV-vis), Raman and electron spin resonance (esr) spectroscopy. The most widely used is IR spectroscopy, which has some significant advantages. One of them is its high information content, and the other lies in the absence of overlapping bands in matrix IR spectra because the peaks are very narrow (about 1 cm ), due to the low temperature and the absence of rotation and interaction between molecules in the matrix. This fact allows the identification of practically all the compounds present, even in multicomponent reaetion mixtures, and the determination of vibrational frequencies of molecules with high accuracy (up to 0.01 cm when Fourier transform infrared spectrometers are used). [Pg.6]

The potential energy surface [47] for this reaction (Fig. 5) shows many potentially competitive pathways, labeled A-F, leading to the two most exothermic product channels. Many of these pathways can be isotopically separated by reaction of 02 with HCCO in normal abundance, as diagramed in Fig. 5. Zou and Osbom used time-resolved Fourier transform emission spectroscopy to detect the CO and CO2 products of this reaction [47]. Rotationally resolved infrared (IR) spectroscopy can easily identify all the possible isotopologs. For example. Fig. 6 shows a single... [Pg.234]

The growth and decay of all other species (including O3) were monitored by Fourier transform infrared (FT-IR) spectroscopy at a total pathlength of 460 meters and a spectral resolution of 1 cm". At this pathlength, the intense absorptions of H2O and CO limit the usable IR spectral windows to the approximate regions 750-1300, 2000-2300, and 2400-3000 cm". Each spectrum (700-3000 cm" ) was adequately covered by the response of the Cu Ge detector. Approximately 40 seconds were required to collect the 32 interferograms co-added for each spectrum. [Pg.118]

In recent years, infrared spectroscopy has been enhanced by the possibility of applying Fourier transform techniques to it. This improved spectroscopic technique, known as Fourier transform infrared spectroscopy (FTIR), is of much greater sensitivity than conventional dispersive IR spectroscopy (Skoog West, 1980). Moreover, use of the Fourier transform technique enables spectra to be recorded extremely rapidly, with scan times of only 0-2 s. Thus it is possible to record spectra of AB cements as they set. By comparison, conventional dispersive IR spectroscopy requires long scan times for each spectrum, and hence is essentially restricted to examining fully-set cements. [Pg.364]

It is generally assumed the fluorescence and Fourier transform mid-infrared (FT-IR) spectroscopies do not suffer from the above-mentioned inconveniences and may be applied to turbid samples. Front-face (fluorescence) and attenuated total reflection (FT-IR) techniques may provide information on the structure of adsorbed proteins. [Pg.266]

P.R. Griffiths, Chemical IR Fourier Transform Spectroscopy, Wiley-Interscience, New York, NY (1975). [Pg.568]

Diffuse Reflectance IR Fourier Transform Spectroscopy (DRIFTS) can be employed with high surface area catalytic samples that are not sufficiently transparent to be studied in transmission. In this technique, the diffusely scattered IR radiation from a sample is collected, refocussed, and analysed. Samples can be measured in the form of loose powders. [Pg.41]

Although acetone was a major product, it was not observed by infrared spectroscopy. Flowing helium/acetone over the catalyst at room temperature gave a prominent carbonyl band at 1723 cm 1 (not show here). In this study, a DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) cell was placed in front of a fixed reactor DRIFTS only monitored the adsorbed and gaseous species in the front end of the catalyst bed. The absence of acetone s carbonyl IR band in Figure 3 and its presence in the reactor effluent suggest the following possibilities (i) acetone formation from partial oxidation is slower than epoxidation to form PO and/or (ii) acetone is produced from a secondary reaction of PO. [Pg.407]

The formation of appreciable quantities (up to "oQ0% based on the initial additive concentration) of the grafted substituted hydroxylamine O W0PP as from reaction 7) in photo-degrading PPH can be demonstrated by indirect methods (10, 11). For example after the rapid loss of the initial concentration of a piperidine or its nitroxide in PPH film, heating the film immersed in isooctane for several hours at 100 C in the presence of oxygen causes the re-appearance of nitroxide in appreciable quantities as measured by e.s.r. spectroscopy (ll). This nitroxide most likely results from a reaction analogous to reaction 8 (l2). In addition we have observed the ) N-0-C band (at 1306 cm 1) in the infrared spectrum of irradiated, nitroxide-containing PP films by Fourier Transform IR spectroscopy (ll)., ... [Pg.53]

While most of the references tend nowadays to use FT-IR/FTIR (Fourier transform infrared) to denote the use of mid-infrared spectroscopy we mostly use the more precise phrasing of mid-infrared (mid-IR) spectroscopy. [Pg.402]

Infrared (IR) spectroscopy, especially when measured by means of the Fourier transform method (FTIR), is another powerful technique for the physical characterization of pharmaceutical solids [17]. In the IR method, the vibrational modes of a molecule are used to deduce structural information. When studied in the solid, these same vibrations normally are affected by the nature of the structural details of the analyte, thus yielding information useful to the formulation scientist. The FTIR spectra are often used to evaluate the type of polymorphism existing in a drug substance, and they can be very useful in studies of the water contained within a hydrate species. With modem instrumentation, it is straightforward to obtain FTIR spectra of micrometer-sized particles through the use of a microscope fitted with suitable optics. [Pg.7]

Most chemists tend to think of infrared (IR) spectroscopy as the only form of vibrational analysis for a molecular entity. In this framework, IR is typically used as an identification assay for various intermediates and final bulk drug products, and also as a quantitative technique for solution-phase studies. Full vibrational analysis of a molecule must also include Raman spectroscopy. Although IR and Raman spectroscopy are complementary techniques, widespread use of the Raman technique in pharmaceutical investigations has been limited. Before the advent of Fourier transform techniques and lasers, experimental difficulties limited the use of Raman spectroscopy. Over the last 20 years a renaissance of the Raman technique has been seen, however, due mainly to instrumentation development. [Pg.60]


See other pages where Fourier - IR spectroscopy is mentioned: [Pg.297]    [Pg.190]    [Pg.45]    [Pg.297]    [Pg.190]    [Pg.45]    [Pg.1780]    [Pg.2788]    [Pg.286]    [Pg.487]    [Pg.413]    [Pg.432]    [Pg.412]    [Pg.481]    [Pg.368]    [Pg.79]    [Pg.463]    [Pg.313]    [Pg.50]    [Pg.712]    [Pg.133]    [Pg.165]    [Pg.739]    [Pg.52]    [Pg.37]    [Pg.68]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Fourier spectroscopy

© 2024 chempedia.info