Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Forwarding

Forward-feed operation is shown in Fig. 3.12a. The fresh feed is added to the first stage and fiows to the next stage in the same direction as the vapor flow. The boiling temperature decreases from stage to stage, and this arrangement is thus used when the... [Pg.85]

No a priori information about the unknown profile is used in this algorithm, and the initial profile to start the iterative process is chosen as (z) = 1. Moreover, the solution of the forward problem at each iteration can be obtained with the use of the scattering matrices concept [8] instead of a numerical solution of the Riccati equation (4). This allows to perform reconstruction in a few seconds of a microcomputer time. The whole algorithm can be summarized as follows ... [Pg.129]

Eddy-current non-destructive evaluation is widely used in the aerospace and nuclear power industries for the detection and characterisation of defects in metal components. The ability to predict the probe response to various types of defect is highly valuable since it enables the influence of particular parameters to be studied without recourse to costly and time consuming experiments. The solution of forward problems is also essential in the process of inverting experimental data. [Pg.140]

This paper compares experimental data for aluminium and steel specimens with two methods of solving the forward problem in the thin-skin regime. The first approach is a 3D Finite Element / Boundary Integral Element method (TRIFOU) developed by EDF/RD Division (France). The second approach is specialised for the treatment of surface cracks in the thin-skin regime developed by the University of Surrey (England). In the thin-skin regime, the electromagnetic skin-depth is small compared with the depth of the crack. Such conditions are common in tests on steels and sometimes on aluminium. [Pg.140]

Forward modelling is the first step for inverting data for the reconstruction of the defect. For this purpose, the specialised code is better adapted because it is faster than the general code. [Pg.147]

The introduction of automated scanning systems was a great leap forward in the development. That way, the uncertainties of manual probe guidance were eliminated. Usually, these systems were designed for high-frequency surface tests and followed the outer profile of the surface with a probe that could be moved in several axes. A continuous 100 % scan became possible and, as a result, the documentation of the tests with stripchart recorders suggested itself. Now for the first time, wheel testing became retraceable. [Pg.306]

This paper is structured as follows in section 2, we recall the statement of the forward problem. We remind the numerical model which relates the contrast function with the observed data. Then, we compare the measurements performed with the experimental probe with predictive data which come from the model. This comparison is used, firstly, to validate the forward problem. In section 4, the solution of the associated inverse problem is described through a Bayesian approach. We derive, in particular, an appropriate criteria which must be optimized in order to reconstruct simulated flaws. Some results of flaw reconstructions from simulated data are presented. These results confirm the capability of the inversion method. The section 5 ends with giving some tasks we have already thought of. [Pg.327]

These equations are the coupled system of discrete equations that define the rigorous forward problem. Note that we can take advantage of the convolution form for indices (i — I) and (j — J). Then, by exciting the conductive media with a number N/ oi frequencies, one can obtain the multifrequency model. The kernels of the integral equations are described in [13] and [3j. [Pg.328]

In this case, we can conclude that the small sensor is lightly tilted with an angle of 0,25 degrees. We have concluded, during experimentations, that the measurement of the magnetic field is very sensitive to the angle of inclinaison of the sensor. In this way, we validate the computation of the incident field E (r). We can also expect some difficulties for the validation of the forward problem by experimental data. [Pg.329]

The fish blocks are positioned in front of the cabinet on a loading conveyor that will separate and load the first block into the cabinet and move the next block(s) one step forwards. The entrance panel will automatically open and close to admit the blocks in sequence (figure 3, overleaf). [Pg.591]

Accurate modelling of the field radiated by ultrasonic transducers is an essential step forward considering the final goal of the complete simulation of pulse echo experiments. [Pg.735]

The principle of the acquisition system is to translate the probe into a tube (including hemispherical drilled holes) step by step, every 0.04 mm, after a forwards and backwards 360 rotation of the tube trigging every 0.2° angular step a 360° electronic scanning of tube with the 160 acoustic apertures. During the electronic scanning the tube is assumed to stay at the same place. The acquisition lasts about 30 minutes for a C-scan acquisition with a 14 kHz recurrence frequency. [Pg.824]

Tile detection of this type of wastage is very straight forward as there is an exaggerated increase in the amplitude of lube w all eccentricity. The amount of wastage can be estimated by visualising the original wave shape and subtracting the measured minimum value. [Pg.1040]

The usual situation, true for the first three cases, is that in which the reactant and product solids are mutually insoluble. Langmuir [146] pointed out that such reactions undoubtedly occur at the linear interface between the two solid phases. The rate of reaction will thus be small when either solid phase is practically absent. Moreover, since both forward and reverse rates will depend on the amount of this common solid-solid interface, its extent cancels out at equilibrium, in harmony with the thermodynamic conclusion that for the reactions such as Eqs. VII-24 to VII-27 the equilibrium constant is given simply by the gas pressure and does not involve the amounts of the two solid phases. [Pg.282]

For the steady-state case, Z should also give the forward rate of formation or flux of critical nuclei, except that the positive free energy of their formation amounts to a free energy of activation. If one correspondingly modifies the rate Z by the term an approximate value for I results ... [Pg.331]

A rather different method from the preceding is that based on the rate of dissolving of a soluble material. At any given temperature, one expects the initial dissolving rate to be proportional to the surface area, and an experimental verification of this expectation has been made in the case of rock salt (see Refs. 26,27). Here, both forward and reverse rates are important, and the rate expressions are... [Pg.577]

Because of their prevalence in physical adsorption studies on high-energy, powdered solids, type II isotherms are of considerable practical importance. Bmnauer, Emmett, and Teller (BET) [39] showed how to extent Langmuir s approach to multilayer adsorption, and their equation has come to be known as the BET equation. The derivation that follows is the traditional one, based on a detailed balancing of forward and reverse rates. [Pg.618]

Figure Al.6.17. Double-sided Feymnan diagrams, showhig the interaction time with the ket (left) and the bra (right). Time moves forward from down to up (adapted from [36]). Figure Al.6.17. Double-sided Feymnan diagrams, showhig the interaction time with the ket (left) and the bra (right). Time moves forward from down to up (adapted from [36]).
Egelhoff W F Jr 1990 X-ray photoelectron and Auger electron forward scattering a new tool for surface crystallography CRC Crit. Rev. Soiid State Mater. Sc/. 16 213... [Pg.319]

Conservation laws at a microscopic level of molecular interactions play an important role. In particular, energy as a conserved variable plays a central role in statistical mechanics. Another important concept for equilibrium systems is the law of detailed balance. Molecular motion can be viewed as a sequence of collisions, each of which is akin to a reaction. Most often it is the momentum, energy and angrilar momentum of each of the constituents that is changed during a collision if the molecular structure is altered, one has a chemical reaction. The law of detailed balance implies that, in equilibrium, the number of each reaction in the forward direction is the same as that in the reverse direction i.e. each microscopic reaction is in equilibrium. This is a consequence of the time reversal syimnetry of mechanics. [Pg.378]


See other pages where Forwarding is mentioned: [Pg.85]    [Pg.114]    [Pg.158]    [Pg.251]    [Pg.300]    [Pg.371]    [Pg.38]    [Pg.114]    [Pg.128]    [Pg.129]    [Pg.274]    [Pg.275]    [Pg.326]    [Pg.327]    [Pg.327]    [Pg.328]    [Pg.328]    [Pg.329]    [Pg.333]    [Pg.546]    [Pg.548]    [Pg.548]    [Pg.564]    [Pg.1048]    [Pg.213]    [Pg.436]    [Pg.708]    [Pg.275]    [Pg.308]    [Pg.338]   
See also in sourсe #XX -- [ Pg.204 ]




SEARCH



Forward

Forwarder

© 2024 chempedia.info