Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formation and Alkylation of Enamines

Mechanism 22-4 Base-Catalyzed Keto-EnolTautomerism 1047 Mechanism 22-5 Acid-Catalyzed Keto-EnolTautomerism 1047 22-3 Alkylation of Enolate Ions 1050 22-4 Formation and Alkylation of Enamines 1051 22-5 Alpha Halogenation of Ketones 1054... [Pg.21]

A milder alternative to direct alkylation of enolate ions is the formation and alkylation of an enamine derivative. An enamine (a vinyl amine) is the nitrogen analogue of an enol. The resonance picture of an enamine shows that it has some carbanion character. [Pg.1051]

Alkylation of enamines can take place on carbon or on nitrogen (see Section I). The theoretical considerations and reaction conditions which determine whether C or N alkylation takes place have already been studied extensively 26-32). These studies have shown that the facility with which alkylation takes place depends on the basicity of theenamine, on the ease of formation of a trigonal atom in the transition state, and on the nature of the enamine, the alkylating agent, and the solvent. [Pg.119]

Alkylation of enamines requires relatively reactive alkylating agents for good results. Methyl iodide, allyl and benzyl halides, a-halo esters, a-halo ethers, and a-halo ketones are the most successful alkylating agents. The use of enamines for selective alkylation has largely been supplanted by the methods for kinetic enolate formation described in Section 1.2. [Pg.47]

A new diastereoselective and enantioselective synthesis of a-amino-y-oxo acid esters has been reported involving the alkylation of enamines with acyliminoacetates (78). The stereocontrol is attributed to formation of a Diels-Alder like transition state (79). Ring opening of the adduct leads to a zwitterion or alkylated enamine, hydrolysis of which gives the single diastereoisomer (80 de > 96%)174 (Scheme 71). The use of a chiral ester [R = ( + )- or ( —)-menthyl or (—)-8-phenylmenthyl] converted this process into an enantioselective reaction (de and ee 24-67%). Since the reaction proceeds with complete anti-diastereoselectivity the two stereoisomers, enantiomeric at the two new stereogenic centres, could readily be separated by fractional crystallization. The main isomer of 80 (X = CH2), obtained in 80% yield, was shown to have the (l S, 2R)-configuration174. [Pg.775]

Another technique is to block one of the a-positions by introduction of a removable substituent which prevents formation of the corresponding enolate. Selective alkylation can be performed after acylation with ethyl formate and transformation of the resulting formyl (or hydroxymethylene) substituent into a group that is stable to base, such as an enamine, an enol ether or an enol thioether. An example of this procedixre is shown in Scheme 1.16, in the preparation of 9-methyl-1-decalone from rra 5-1-decalone. Direct alkylation of this compound gives mainly the 2-alkyl derivative, whereas blocking the 2-position allows the formation of the required 9-alkyl-1-decalone (as a mixture of cis and trans isomers). [Pg.10]

Reaction conditions depend on the reactants and usually involve acid or base catalysis. Examples of X include sulfate, acid sulfate, alkane- or arenesulfonate, chloride, bromide, hydroxyl, alkoxide, perchlorate, etc. RX can also be an alkyl orthoformate or alkyl carboxylate. The reaction of cycHc alkylating agents, eg, epoxides and a2iridines, with sodium or potassium salts of alkyl hydroperoxides also promotes formation of dialkyl peroxides (44,66). Olefinic alkylating agents include acycHc and cycHc olefinic hydrocarbons, vinyl and isopropenyl ethers, enamines, A[-vinylamides, vinyl sulfonates, divinyl sulfone, and a, P-unsaturated compounds, eg, methyl acrylate, mesityl oxide, acrylamide, and acrylonitrile (44,66). [Pg.109]

The presence of 1,3-diaxial interaction between the C-2 alkyl group and the C-4 axial hydrogen atom is reflected in the rate of enamine formation of 2-substituted cyclohexanone. It has been shown by Hunig and Salzwedel (20) that even under forcing conditions, the yield of pyrrolidine and morpholine enamines of 2-methylcyclohexanone does not exceed 58%, whereas the C-2 unsubstituted ketones underwent enamine formation under rather milder conditions in better than 80 % yield. [Pg.11]

The addition of secondary amines to 1-cyanoallenes (161) results in the formation of enamines in 80-90% yield (124). Addition can occur at the 1,2 or 2,3 double bonds so that a mixture of isomeric enamines (162 and 163) is formed. The ratio of products is influenced by the alkyl substituents on the cyanoallenes and the structure of the secondary amine. [Pg.91]

Experimental evidence, obtained in protonation (3,6), acylation (1,4), and alkylation (1,4,7-9) reactions, always indicates a concurrence between electrophilic attack on the nitrogen atom and the -carbon atom in the enamine. Concerning the nucleophilic reactivity of the j3-carbon atom in enamines, Opitz and Griesinger (10) observed, in a study of salt formation, the following series of reactivities of the amine and carbonyl components pyrrolidine and hexamethylene imine s> piperidine > morpholine > cthyl-butylamine cyclopentanone s> cycloheptanone cyclooctanone > cyclohexanone monosubstituted acetaldehyde > disubstituted acetaldehyde. [Pg.102]

It is noteworthy that only in the case of dehydroquinolizidine derivatives does monomethylation produce the N-alkylated product. The formation of dialkylated products can be explained by a disproportionation reaction of the monoalkylated immonium salt caused by either the basicity of the starting enamine or some base added to the reaction mixture (most often potassium carbonate) and subsequent alkylation of the monoalkylated enamine. Reinecke and Kray 113) try to explain the different behavior of zJ -dehydroquinolizidine and zJ -dehydroquinolizidine derivatives by the difference in energies of N- and C-alkylation transition states because of the presence of I strain. [Pg.279]

Reactions of Enamine Salts with OrganometalUc Compounds Organolithium and organomagnesium compounds react with enamine salts to give amines substituted on the ix-carbon atoms. The treatment of. -dehydroquinolizidinium perchlorate (163) with alkylmagnesium halides gives 9-alkylated quinolizidines (164) (252,256). Formation of... [Pg.289]

The illumination of enamines as general activa ting derivatives of ketones in alkylation reactions also threw light on their special usefulness for controlling alkylations (3), particularly in the formation of monosubstituted cyclohexanones. Thus 2-methylcyclohexanone could be obtained in 80% yield from the pyrrolidine enamine of cyclohexanone, and further alkylation, which required more drastic conditions, gave only 2,6-dimethylcyclo-hexanone (1,237). [Pg.346]

The formation of bicyclic imines (263,264) from piperidine enamines and y-bromopropyl amines may appear at first sight to be a simple extension of the reactions of enamines with alkyl halides. However, evidence has been found that the products are formed by an initial enamine exchange, followed by an intramolecular enamine alkylation. Thus y-bromodiethylamino-propane does not react with piperidinocyclohexene under conditions suitable for the corresponding primary amine. Furthermore, the enamine of cyclopentanone, but not that of cyclohexanone, requires a secondary rather than primary y-bromopropylamine, presumably because of the less favorable imine to enamine conversion in this instance. [Pg.351]

A related enamine alkylation is seen in the rearrangement of an ethylene imine vinylogous amide, which was heated with sodium iodide in diglyme. The presumed internal enamine alkylation constitutes a critical step in an oxocrinane synthesis (265). Use of an ethylene imine urethane for alkylation of an enamine and formation of the hexahydroindole system has also been reported (266). [Pg.351]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

The formation of 3-acylpyridinium compounds (59/) from primary amines and l-methoxybutene-3-one can be regarded as the enamine alkylation of a vinylogous amide followed by cyclization and loss of methanol and water. [Pg.439]

The salicylic acid functionality incorporated in a rather complex molecule interestingly leads to a compound that exhibits much the same activity as the parent. The 1,4 diketone required for formation of the pyrrole ring can be obtained by alkylation of the enamine from 2-tetralone (38) with phenacyl bromide. Condensation of the product, 39, with salicylic acid derivative 40 leads to the requisite heterocyclic system (41). The acid is then esterified (42) and the compound dehydrogenated to the fully aromatic system (43). Saponification affords fendosal (44). ... [Pg.170]

Among the compounds capable of forming enolates, the alkylation of ketones has been most widely studied and applied synthetically. Similar reactions of esters, amides, and nitriles have also been developed. Alkylation of aldehyde enolates is not very common. One reason is that aldehydes are rapidly converted to aldol addition products by base. (See Chapter 2 for a discussion of this reaction.) Only when the enolate can be rapidly and quantitatively formed is aldol formation avoided. Success has been reported using potassium amide in liquid ammonia67 and potassium hydride in tetrahydrofuran.68 Alkylation via enamines or enamine anions provides a more general method for alkylation of aldehydes. These reactions are discussed in Section 1.3. [Pg.31]

TiCl4 also effectively promotes formation of imines and enamines from carbonyl compounds (Scheme 31). The combination of imine formation using TiCl4 and reduction leads to reductive alkylation of an amine moiety.113,114... [Pg.412]

Carbonyl alkylation and condensation reactions are always of great value in synthesis, and the formation of o-ANIS ALDEHYDE via 4,4-dimethyl-2-oxazoline, 2,2-DIMETHYL-3-PHENYLPROPION-ALDEHYDE via alkylation of the magnesio-enamine salt and threo-4-HYDROXY-3-PHENYL-2-HEPTANONE via a directed aldol... [Pg.140]

Alternatively, cyclohexanone may initially be transformed into an enamine with a secondary amine, here pyrrolidine. This intermediate enamine can act as a nucleophile and can be alkylated at the P-position using methyl iodide. Finally, 2-methylcyclohexanone may be generated by hydrolysis of the iminium system, effectively a reversal of enamine formation. This gives us two routes to 2-methylcyclohexanone, a short process using the very strong base LDA and... [Pg.368]

Simple unsaturated sulfides cannot be used in place of enamines in cycloaddition reactions with sulfines leading to thietane dioxide derivatives. " Alkyl, vinyl, and cycloalkylvinyl sulfides, which carry a C=C double bond, are considerably less nucleophilic than the enamines and thus do not partake in cycloadditions to sulfene. But when the more electrophilic methylsulfonyl sulfene is used in association with an unsaturated sulfide substituted with a strong electron donating alkylamino group, the formation of thietane dioxides 72 is successful. [Pg.216]


See other pages where Formation and Alkylation of Enamines is mentioned: [Pg.1051]    [Pg.1051]    [Pg.1053]    [Pg.1053]    [Pg.1053]    [Pg.1055]    [Pg.1051]    [Pg.1051]    [Pg.1053]    [Pg.1053]    [Pg.1053]    [Pg.1055]    [Pg.87]    [Pg.735]    [Pg.889]    [Pg.169]    [Pg.205]    [Pg.257]    [Pg.735]    [Pg.889]    [Pg.159]    [Pg.308]    [Pg.162]    [Pg.1]    [Pg.327]    [Pg.1]    [Pg.76]   


SEARCH



Alkyl formation

Alkylation enamines

Alkylation of enamines

And formation of enamines

Enamines formation

Formation of enamine

Of enamines

© 2024 chempedia.info