Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Force molecular mechanics

At any geometry g.], the gradient vector having components d EjJd Q. provides the forces (F. = -d Ej l d 2.) along each of the coordinates Q-. These forces are used in molecular dynamics simulations which solve the Newton F = ma equations and in molecular mechanics studies which are aimed at locating those geometries where the F vector vanishes (i.e. tire stable isomers and transition states discussed above). [Pg.2157]

The complexity of polymeric systems make tire development of an analytical model to predict tlieir stmctural and dynamical properties difficult. Therefore, numerical computer simulations of polymers are widely used to bridge tire gap between tire tlieoretical concepts and the experimental results. Computer simulations can also help tire prediction of material properties and provide detailed insights into tire behaviour of polymer systems. A simulation is based on two elements a more or less detailed model of tire polymer and a related force field which allows tire calculation of tire energy and tire motion of tire system using molecular mechanisms, molecular dynamics, or Monte Carlo teclmiques 1631. [Pg.2537]

Flelm C A, Israelachvili J N and McGuiggan P M 1989 Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers Science 246 919-22... [Pg.2607]

Grubmiiller et al., 1996] Grubmiiller, H., Heymann, B., and Tavan, P. Ligand binding and molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 271 (1996) 997-999... [Pg.62]

A number of issues need to be addressed before this method will become a routine tool applicable to problems as the conformational equilibrium of protein kinase. E.g. the accuracy of the force field, especially the combination of Poisson-Boltzmann forces and molecular mechanics force field, remains to be assessed. The energy surface for the opening of the two kinase domains in Pig. 2 indicates that intramolecular noncovalent energies are overestimated compared to the interaction with solvent. [Pg.75]

Very recently, we have developed and incorporated into the CHARMM molecular mechanics program a version of LN that uses direct-force evaluation, rather than linearization, for the fast-force components [91]. The scheme can be used in combination with SHAKE (e.g., for freezing bond lengths) and with periodic boundary conditions. Results for solvated protein and nucleic-... [Pg.255]

Z-matriccs arc commonly used as input to quantum mechanical ab initio and serai-empirical) calculations as they properly describe the spatial arrangement of the atoms of a molecule. Note that there is no explicit information on the connectivity present in the Z-matrix, as there is, c.g., in a connection table, but quantum mechanics derives the bonding and non-bonding intramolecular interactions from the molecular electronic wavefunction, starting from atomic wavefiinctions and a crude 3D structure. In contrast to that, most of the molecular mechanics packages require the initial molecular geometry as 3D Cartesian coordinates plus the connection table, as they have to assign appropriate force constants and potentials to each atom and each bond in order to relax and optimi-/e the molecular structure. Furthermore, Cartesian coordinates are preferable to internal coordinates if the spatial situations of ensembles of different molecules have to be compared. Of course, both representations are interconvertible. [Pg.94]

Why "force field . In many situations it is necessary to know about the forces between atoms. This is the case for molecular dynamics, but also for many molecular mechanics applications. According to Eq. (17), the forces F are calculated as the negative derivative of the potential energy E with respect to the coordinates r ... [Pg.338]

Figure 7-8. Bonded (upper row) and non-bonded (lower row) contributions to a typioal molecular mechanics force field potential energy function. The latter two types of Interactions can also occur within the same molecule. Figure 7-8. Bonded (upper row) and non-bonded (lower row) contributions to a typioal molecular mechanics force field potential energy function. The latter two types of Interactions can also occur within the same molecule.
The mathematical formulation of a typical molecular mechanics force field, which is also called the potential energy function (PEF), is shown in Eq. (18). Do not wony yet about the necessary mathematical expressions - they will be explained in detail in the following sections ... [Pg.340]

Many problems in force field investigations arise from the calculation of Coulomb interactions with fixed charges, thereby neglecting possible mutual polarization. With that obvious drawback in mind, Ulrich Sternberg developed the COSMOS (Computer Simulation of Molecular Structures) force field [30], which extends a classical molecular mechanics force field by serai-empirical charge calculation based on bond polarization theory [31, 32]. This approach has the advantage that the atomic charges depend on the three-dimensional structure of the molecule. Parts of the functional form of COSMOS were taken from the PIMM force field of Lindner et al., which combines self-consistent field theory for r-orbitals ( nr-SCF) with molecular mechanics [33, 34]. [Pg.351]

I. Pettersson, T. Liljefors, Molecular mechanics calculated conformational energies of organic molecules a comparison of force fields, in Reviews in Computational Chemistry, Vbl. 9,... [Pg.356]

M. Jalaie, K. B. Lipkowitz, Published force field parameters for molecular mechanics, molecular dynamics, and Monte Carlo simulations, in Reviews in Computational Chemistry, Vol. 14, K.B. Lipkowitz, D. B. Boyd (Eds.), Wiley-VCH, New York, 2000, pp. 441-486. [Pg.356]

T. Fox, C. Chipot, A. PohorUle, The development/application of a minimalisf organic/biochemical molecular mechanic force field using a combination of ab-initio calculations and experimental data, in Computer Simulation of Biomolecular Systems. [Pg.357]

A descriptor for the 3D arrangement of atoms in a molceulc can be derived in a similar manner. The Cartesian coordinates of the atoms in a molecule can be calculated by semi-empirical quantum mechanical or molecular mechanics (force field) methods, For larger data sets, fast 3D structure generators are available that combine data- and rule-driven methods to calculate Cartesian coordinates from the connection table of a molecule (e.g., CORINA [10]). [Pg.517]

The classical introduction to molecular mechanics calculations. The authors describe common components of force fields, parameterization methods, and molecular mechanics computational methods. Discusses th e application of molecular mechanics to molecules comm on in organic,and biochemistry. Several chapters deal w ith thermodynamic and chemical reaction calculations. [Pg.2]

In stead, these m eth od s solve the poten tial energy surface by using a force field equation (see Molecular Mechanics" on page2] i.The force field equation represen ts electron ic energy implicitly th roil gh param eteri/ation. [Pg.12]

Th is discussion focuses on th e individual compon en ts of a typical molecular mechanics force field. It illustrates the mathematical functions used, wdi y those functions are chosen, and the circiim -Stan ces u n der wh ich the fun ction s become poor approxirn atiori s. Part 2 of th is book, Theory and Melhadx, includes details on the implementation of the MM+,. AM BHR, RlO-g and OPl.S force fields in HyperChem. [Pg.22]

TlypcrC hcm oilers four molecular mechanics force fields MM+, AMBER, BIO+, and OPES (sec References on page 106). To run a molecular mechanics calciilaLion. yon miisi lirsi choose a force Eeld. The following sections discuss considerations in choosing a force field. [Pg.101]

For biological polymers, molecular mechanics force fields arc not well substantiated by experirn eri tal data. You should be cautious about relying on predictions from thesc calculations. [Pg.103]

The UyperChem Reference manual and Genius Sianed discuss the sec neiice of steps to perform a molecular mechanics calculation. These steps in elude choosing a force field, force field option s, and possible restrain is. [Pg.103]

Molecular mechanics force fields have much information built into them and can be accurate for the molecules used in their param eten/ation. For molecules outside the limited scope for 40. Dewar. J. S. Dicier, K. M../. Am. Chem. Soc. 108 807. ), 1086. [Pg.132]

Hach molecular mechanics method has its own functional form MM+. AMBER, OPL.S, and BIO+. The functional form describes the an alytic form of each of th e term s in th e poteri tial. For exam pie, MM+h as both a quadratic and a cubic stretch term in th e poten tial whereas AMBER, OPES, and BIO+ have only c nadratic stretch term s, I h e functional form is referred to here as the force field. For exam pie, th e fun ction al form of a qu adratic stretch with force constant K, and equilibrium distance i q is ... [Pg.168]

Many of llic i(Jc isati(J insucs sii non rutin g ihc use of molecular mechanics (or force field technology) in computational chemistry are common to all force fields and in this section we describe many of Lli esc basic ideas. [Pg.174]

Electrostatic terms other than the simple charge interactions above are commonly included in molecular mechanics calculations. particularly dipole-dipole interactions. More recently, second-order electrostatic interactions like those describing polarizability have been added to some force fields. [Pg.179]


See other pages where Force molecular mechanics is mentioned: [Pg.2059]    [Pg.2279]    [Pg.2342]    [Pg.2990]    [Pg.41]    [Pg.70]    [Pg.131]    [Pg.135]    [Pg.177]    [Pg.227]    [Pg.338]    [Pg.338]    [Pg.339]    [Pg.349]    [Pg.350]    [Pg.359]    [Pg.361]    [Pg.4]    [Pg.107]    [Pg.165]    [Pg.167]    [Pg.200]    [Pg.204]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



Molecular forces

© 2024 chempedia.info