Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorine cyanides

Cyanogen Fluoride or Fluorine Cyanide, FCN, mw 45.02 colorless, very irritant gas forms a wh.pulvurelent mass if cooled strongly. and sublimes at —72° insol in w. Can be prepd by interaction of AgF and cyanogen iodide. [Pg.513]

Ethyl tra s-3-phenyl-2-propenoate 4952 Fluorine cyanide 2515 6-0- 3-D-Glucopyranosyl-D-glucose 5527... [Pg.706]

Cyanides Acids, water or steam, fluorine, magnesium, nitric acid and nitrates, nitrites... [Pg.1208]

Mercury(II) cyanide Fluorine, hydrogen cyanide, magnesium, sodium nitrite... [Pg.1209]

Other salts include lead arsenates and lead arsenites (see Insect control technology), lead chromates and lead sihcochromates (see Pigments), lead cyanide (see Cyanides), lead 2-ethyIhexanoate (see Driers and metallic soaps), and lead fluoroborate (see Fluorine compounds, inorganic). [Pg.73]

Chemical Hazards. Chemical manufacturers and employees contend with various ha2ards inherent ia productioa of evea commonplace materials. For example, some catalysts used ia the manufacture of polyethylene (see Olefin polymers) ignite when exposed to air or explode if allowed to become too warm the basic ingredient ia fluorocarboa polymers, eg, Tefloa (see Fluorine compounds, organic), can become violently self-reactive if overheated or contaminated with caustic substances (45,46) one of the raw materials for the manufacture of acryflc fibers (see Fibers, acrylic) is the highly toxic hydrogen cyanide (see Cyanides). [Pg.94]

The formation of ethyl cyano(pentafluorophenyl)acetate illustrates the intermolecular nucleophilic displacement of fluoride ion from an aromatic ring by a stabilized carbanion. The reaction proceeds readily as a result of the activation imparted by the electron-withdrawing fluorine atoms. The selective hydrolysis of a cyano ester to a nitrile has been described. (Pentafluorophenyl)acetonitrile has also been prepared by cyanide displacement on (pentafluorophenyl)methyl halides. However, this direct displacement is always aecompanied by an undesirable side reaetion to yield 15-20% of 2,3-bis(pentafluoro-phenyl)propionitrile. [Pg.82]

Iodide ions reduce Cu to Cu , and attempts to prepare copper(ll) iodide therefore result in the formation of Cul. (In a quite analogous way attempts to prepare copper(ll) cyanide yield CuCN instead.) In fact it is the electronegative fluorine which fails to form a salt with copper(l), the other 3 halides being white insoluble compounds precipitated from aqueous solutions by the reduction of the Cu halide. By contrast, silver(l) provides (for the only time in this triad) 4 well-characterized halides. All except Agl have the rock-salt structure (p. 242). Increasing covalency from chloride to iodide is reflected in the deepening colour white yellow, as the... [Pg.1185]

Acetylene works Acrylates works Aldehyde works Aluminum works Amines works Ammonia works Anhydride works Arsenic works Asbestos works Benzene works Beryllium works Bisulfate works Bromine works Cadmium works Carbon disulfide works Carbonyl works Caustic soda works Cement works Ceramic works Chemical fertilizer works Chlorine works Chromium works Copper works Di-isocyanate works Electricity works Fiber works Fluorine works Gas liquor works Gas and coke works Hydrochloric acid works Hydrofluoric acid works Hydrogen cyanide works Incineration works Iron works and steel works... [Pg.755]

Mg ribbon and fine Mg shavings can be ignited at air temps of about 950°F (Ref 26). Oxides of Be, Cd, Hg, Mo and Zn can react explosively with Mg when heated (Ref 8). Mg reacts with incandescence when heated with the cyanides of Cd, Co, Cu,Pb, Ni or Zn or with Ca carbide (Ref 9). It is spontaneously flam-mable when exposed to moist chlorine (Ref 10), and on contact with chloroform, methyl chloride (or mixts of both), an expl occurs (Ref 4). Mg also reacts violently with chlorinated hydrocarbons, nitrogen tetroxide and A1 chloride (Ref 14). The reduction of heated cupric oxide by admixed Mg is accompanied by incandescence and an expin (Ref 7).Mg exposed to moist fluorine is spontaneously flammable (Ref 11). When a mixt of Mg and Ca carbonate is heated in a current of hydrogen, a violent ex pin occurs (Ref 12). When Mo trioxide is heated with molten Mg, a violent detonation occurs (Ref 1). Liq oxygen (LOX) gives a detonable mixt when... [Pg.23]

N 14.15% a deep blue solid, liq, or gas. The color of the liq is described as that of a coned ammoniacal Cu soln (Ref 2). The odor is described as earthy or similar to sewage sludge (Ref 2). Mp -196.6°, bp -84° (Refs 1 2) CA Registry No 334-99-6 Preparation. It was first isolated as a by-prod from the fluorination of Ag cyanide. Its formation was attributed to the presence of Ag nitrate or Ag oxide in the tech grade Ag cyanide used (Ref 2). The first prepn in good yield was by the irradiation in a sealed tube of a mixt of nitric oxide and trifluoromethyl iodide plus a small amt of Hg with the light from a Hg vapor lamp, yield 75% (Ref 3). [Pg.104]

Silver cyanide detonates in contact with fluorine even at low temperatures. [Pg.220]

The use of plant extracts for insect control dates into antiquity the use of Paris green as an insecticide for control of the Colorado potato beetle in 1867 probably marks the beginning of the modern era of chemical control of injurious insects. The development of lead arsenate followed later in the nineteenth century for gypsy moth control. The commercial production of nicotine insecticides, the production of calcium arsenate at the time of the first world war, and the use of fluorine, arsenical, and cyanide compounds, as well as other inorganic chemicals for insect control, were important steps in pest control. These chemicals were applied largely by dilute high pressure sprays or dusts. [Pg.218]

Copper(II) sulfate Cumene hydroperoxide Cyanides Cyclohexanol Cyclohexanone Decaborane-14 Diazomethane 1,1-Dichloroethylene Dimethylformamide Hydroxylamine, magnesium Acids (inorganic or organic) Acids, water or steam, fluorine, magnesium, nitric acid and nitrates, nitrites Oxidants Hydrogen peroxide, nitric acid Dimethyl sulfoxide, ethers, halocarbons Alkali metals, calcium sulfate Air, chlorotrifluoroethylene, ozone, perchloryl fluoride Halocarbons, inorganic and organic nitrates, bromine, chromium(VI) oxide, aluminum trimethyl, phosphorus trioxide... [Pg.1477]

Mercury(II) cyanide Mercury(I) nitrate Mercury(II) nitrate Fluorine, hydrogen cyanide, magnesium, sodium nitrite Phosphorus Acetylene, aromatics, ethanol, hypophosphoric acid, phosphine, unsaturated organic compounds... [Pg.1478]

Nickel carbonyl Niobium Nitrates Air, bromine, oxidizing materials Bromine trifluoride, chlorine, fluorine Aluminum, BP, cyanides, esters, phosphorus, tin(II) chloride, sodium hypophos-... [Pg.1479]

This enhanced reactivity of fluoromethyl cyanide is undoubtedly due to the inductive effect of the fluorine atom which produces an electron deficit on the carbon atom linked to the nitrogen, and presumably increases still further the polarity of the carbon-nitrogen bond, so that the electron displacements can be pictured as (IX). The increased polarity of the carbon-nitrogen bond will obviously facilitate polar addition of hydrogen chloride and alcohols (or phenols). [Pg.141]

The reduction of 2 - 2 -fluoroethoxyethyl cyanide, using Raney nickel and hydrogen, was examined under a variety of conditions. Defluorination readily took place, but finally conditions were found which permitted the conversion of CN to CHa NH2 without the removal of the fluorine atom, giving 3-2 -fluoro-ethoxypropylamine as a stable distillable liquid. [Pg.175]

Fluorinated alkyl cyanides, such as trifluoroacetonitrile, pentafluoropropionitrile, per-fluorobutyronitrile and chlorodifluoroacetonitrile, react with butadiene in the gas phase at 350-400 °C to afford pyridines in high yields (equation 82)72. The push-pull diene 150 and electron-rich cyanides (acetonitrile or acrylonitrile) furnish pyridines (equation 83)73. [Pg.511]


See other pages where Fluorine cyanides is mentioned: [Pg.516]    [Pg.46]    [Pg.516]    [Pg.516]    [Pg.355]    [Pg.573]    [Pg.273]    [Pg.707]    [Pg.128]    [Pg.73]    [Pg.261]    [Pg.272]    [Pg.516]    [Pg.46]    [Pg.516]    [Pg.516]    [Pg.355]    [Pg.573]    [Pg.273]    [Pg.707]    [Pg.128]    [Pg.73]    [Pg.261]    [Pg.272]    [Pg.194]    [Pg.386]    [Pg.133]    [Pg.362]    [Pg.475]    [Pg.285]    [Pg.1025]    [Pg.1031]    [Pg.204]    [Pg.285]    [Pg.230]    [Pg.77]    [Pg.160]    [Pg.258]    [Pg.363]    [Pg.1517]    [Pg.437]    [Pg.102]    [Pg.185]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



© 2024 chempedia.info