Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluorenes excitation

The excited triplet states of quinones can be fairly readily populated by irradiation and nuclear polarization observed (Cocivera, 1968). Hydrogen atom abstraction leads to the relatively stable semiquinone radicals and, in alkaline media, radical anions. Recombination of radical pairs formed in this way can give rise to CIDNP signals, as found on irradiation of phenanthraquinone (20) in the presence of donors such as fluorene, xanthene and diphenylmethane (Maruyama et al., 1971a, c Shindo et al., 1971 see also Maruyama et al., 1972). The adducts are believed to have the 1,2-structure (21) with the methine proton appearing in absorption in the polarized spectrum, as expected for a triplet precursor. Consistently, thermal decomposition of 21 as shown in equation (61) leads to polarization of the reactant but now in emission (Maruyama... [Pg.109]

The use of near-IR-laser excited FT-SERS eliminates the disturbing fluorescence of impurities found with visible excitation, and provides SERS enhancement factors that are about 20 times larger than those found for excitation at 514.5nm [792]. For a strong Raman scatterer (fluorene), a typical detection limit of 500 ng is found for a 3-mm diameter spot. For weak scatterers, the detection limits may be in the high- xg region, which means that some compromise between chromatographic... [Pg.536]

Another example of efficient Forster energy transfer in Eu3+ complexes of fluorene copolymers (similar to the alternating copolymers described in Scheme 2.49) was demonstrated by Huang and coworkers [414] for random copolymers. They synthesized copolymers 336 with a different ratio between the fluorene and the benzene units in the backbone and converted them into europium complexes 337 (Scheme 2.50) [414]. The complexes 337 were capable of both blue and red emission under UV excitation. In solution, blue emission was the dominant mode. However, the blue emission was significantly reduced or completely suppressed in the solid state and nearly monochromatic (fwhm 4 nm) red emission at 613 nm was observed. [Pg.169]

Some PAHs (e.g., phenanthrene, pyrene, and benzo[g,/z,i]perylene) are commonly seen in products boiling in the middle to heavy distillate range. In a method for their detection and analysis (EPA 8310), an octadecyl column and an aqueous acetonitrile mobile phase are used. Analytes are excited at 280 nm and detected at emission wavelengths of >389 nm. Naphthalene, acenaphthene, and fluorene must be detected by a less sensitive UV detector because they emit light at wavelengths below 389 nm. Acenaphthylene is also detected by UV detector. [Pg.204]

In addition to the rather trivial differences mentioned above, laser irradiation can also lead to products as a result of reexcitaion of the carbenes. Thus, excitation of 30 in isooctane with a pulse of the 249-nm line from a KrF excimer laser results in the formation of 9,10-diphenylanthrancene (103), 9,10-diphenylphenanthrene (104), and fluorene, in addition to tetraphenylethylene (Scheme 9.31). Conventional lamp irradiation of 30 results in the formation of benzophenone azine as a major product. None of the products mentioned above are detected. Moreover, the yield of both 103 and fluorene increased markedly with increased laser power. While the details of the mechanism of this reaction are not certain yet, it is clear from the dependence on laser power that some of these products arise from carbene photochemistry. " ... [Pg.435]

Fluorescence Anisotropy of Fluorenes under Two-photon Excitation. 124... [Pg.97]

Photochemical Properties of Fluorenes Under One-photon Excitation. .. 127... [Pg.97]

The time-resolved emission spectra (TRES) and fluorescence lifetimes, ti, of the fluorene derivatives were measured in liquid solutions at room temperature with a PTI QuantaMaster spectrofluorimeter with 0.1 ns temporal resolution [20]. At this resolution, all investigated fluorenes exhibited TRES which were coincident with the corresponding steady-state fluorescence spectra. As an example, TRES for compounds 3 and 11 in hexane, THE, and ACN are presented in Eig. 8 for different nanosecond delays 0 ns (curves 2,4,6) and 5 ns, which modeled the steady-state condition (curves 3,5,7). No differences in the fluorescence spectra for these two delays were observed, indicating that all relaxation processes in the first excited state Si are sufficiently fast for fluorene molecifles and did not exceed the time resolution of the PTI system ( 0.1 ns). [Pg.110]

Excited-State Absorption and Anisotropy Properties of Fluorene Derivatives... [Pg.116]

The electronic structure of fluorenes and the development of their linear and nonlinear optical structure-property relationships have been the subject of intense investigation [20-22,25,30,31]. Important parameters that determine optical properties of the molecules are the magnitude and alignment of the electronic transition dipole moments [30,31]. These parameters can be obtained from ESA and absorption anisotropy spectra [32,33] using the same pump-probe laser techniques described above (see Fig. 9). A comprehensive theoretical analysis of a two beam (piunp and probe) laser experiment was performed [34], where a general case of induced saturated absorption anisotropy was considered. From this work, measurement of the absorption anisotropy of molecules in an isotropic ensemble facilitates the determination of the angle between the So Si (pump) and Si S (probe) transitions. The excited state absorption anisotropy, rabs> is expressed as [13] ... [Pg.116]

Comprehensive experimental investigations of 2PA processes in fluorene derivatives were performed by Hales et al. [53,56-59] with open aperture Z-scan [26], two-photon induced fluorescence [60] and femtosecond white-light continuum pump-probe methods [61]. For degenerate two-photon excitation, the experimental 2PA spectra of symmetrical and asymmetrical fiuorenes are presented in Figs. 15 and 16. These spectra were obtained with the combination of open aperture Z-scan and two-photon fluorescence methods [57]. For centrosymmetric molecules, two-photon transitions from... [Pg.121]

As was shown above, the 2PA spectra of symmetrical and unsymmetrical fluorene derivatives exhibit a complex nature of 2PA bands in the spectral region 280-420 nm (see Figs. 15, 16). In general, the nature of 2PA processes should be reflected in anisotropy spectra. These spectra, T2pa Uexc) can be obtained with Eq. 1 in the same way as riPA(A,exc)> however, with two-fold longer excitation wavelengths (560-840 nm). [Pg.124]

The photochemical stabihty of the molecules is characterized by the quantum yield of photodecomposition, (P = N/Q [69], where N and Q are the numbers of decomposed molecifles and absorbed photons, respectively. The photochemical properties of the fluorene derivatives were investigated in different organic solvents (hexane, CH2CI2, ACN, and polyTHF) at room temperature by the absorption and fluorescence methods and comprehensively described [70-72]. These methods are based on measurements of the temporal changes in the steady-state absorption and fluorescence spectra during irradiation. For the absorption method, the quantum yield of the photodecomposition under one-photon excitation, c >ipa, can be obtained by the equation [73] ... [Pg.127]

The photochemical stability of the fluorene derivatives under two-photon excitation into the main absorption band was investigated by the fluorescence... [Pg.128]

In conclusion, it should be noted that fluorene derivatives 16 and 22, with large two-photon absorption cross sections, high fluorescence quantum yields and high photochemical stabihty imder one- and two-photon excitation are outstanding candidates for various linear and nonhnear optical apphcations, especially 3D fluorescence bioimaging. [Pg.130]

Both writing and recording were accomplished by two-photon excitation of a spin-coated film containing fluorene 3, the photoacid generator, and polystyrene or, alternatively, in which writing was accomphshed by xy scans... [Pg.142]


See other pages where Fluorenes excitation is mentioned: [Pg.208]    [Pg.208]    [Pg.790]    [Pg.1370]    [Pg.164]    [Pg.175]    [Pg.245]    [Pg.209]    [Pg.124]    [Pg.557]    [Pg.188]    [Pg.275]    [Pg.891]    [Pg.1370]    [Pg.78]    [Pg.108]    [Pg.108]    [Pg.111]    [Pg.113]    [Pg.115]    [Pg.119]    [Pg.122]    [Pg.123]    [Pg.124]    [Pg.126]    [Pg.127]    [Pg.128]    [Pg.128]    [Pg.129]    [Pg.130]    [Pg.132]    [Pg.133]   
See also in sourсe #XX -- [ Pg.124 ]




SEARCH



Fluoren

© 2024 chempedia.info