Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bingham plastics, fluid flow

The methods presented in Sections 3.1 to 3.6 are general and do not require the assumption of any particular flow model. While the flow of power law fluids and Bingham plastics can be treated by those methods, some results specific to these materials will be considered in this and the next sections. [Pg.118]

Both polymeric and some biological reactors often contain non-Newtonian liquids in which viscosity is a function of shear rate. Basically, three types of non-Newtonian liquids are encountered power-law fluids, which consist of pseudoplastic and dilatant fluids viscoplastic (Bingham plastic) fluids and viscoelastic fluids with time-dependent viscosity. Viscoelastic fluids are encountered in bread dough and fluids containing long-chain polymers such as polyamide and polyacrylonitrite that exhibit coelastic flow behavior. These... [Pg.143]

Figure 4-2. Flow curves for various ideal rheological bodies. A Newtonian liquid. B Pseudoplastic fluid. C Dilatant fluid. D Bingham plastic iii is the yield value). E Pseudoplastic material with a yield value. F Dilatant material with a yield value. Figure 4-2. Flow curves for various ideal rheological bodies. A Newtonian liquid. B Pseudoplastic fluid. C Dilatant fluid. D Bingham plastic iii is the yield value). E Pseudoplastic material with a yield value. F Dilatant material with a yield value.
Rheology is the study of the deformation and flow of fluids. Four different models are used to characterize the flow of fluids Newtonian, Bingham plastic, power law, and viscoelastic In the characterization, models have been developed to relate the observed effects that shear rate has on foam. Several scientists who have studied foamed fluid rheology categorize foam into various models. [Pg.387]

There are other classes of fluids, such as Herschel-Bulkley fluids and Bingham plastics, that follow different stress-strain relationships, which are sometimes useful in different drilling and cementing applications. For a discussion on three-dimensional effects and a rigorous analysis of the stress tensor, the reader should refer to Computational Rheology. For now, we will continue our discussion of mudcake shear stress, but turn our attention to power law fluids. The governing partial differential equations of motion, even for simple relationships of the form given in Equation 17-57, are nonlinear and therefore rarely amenable to simple mathematical solution. For example, the axial velocity v (r) in our cylindrical radial flow satisfies... [Pg.334]

Numerous examples of polymer flow models based on generalized Newtonian behaviour are found in non-Newtonian fluid mechanics literature. Using experimental evidence the time-independent generalized Newtonian fluids are divided into three groups. These are Bingham plastics, pseudoplastic fluids and dilatant fluids. [Pg.6]

Bingham plastics are fluids which remain rigid under the application of shear stresses less than a yield stress, Ty, but flow like a. simple Newtonian fluid once the applied shear exceeds this value. Different constitutive models representing this type of fluids were developed by Herschel and Bulkley (1926), Oldroyd (1947) and Casson (1959). [Pg.6]

One simple rheological model that is often used to describe the behavior of foams is that of a Bingham plastic. This appHes for flows over length scales sufficiently large that the foam can be reasonably considered as a continuous medium. The Bingham plastic model combines the properties of a yield stress like that of a soHd with the viscous flow of a Hquid. In simple Newtonian fluids, the shear stress T is proportional to the strain rate y, with the constant of proportionaHty being the fluid viscosity. In Bingham plastics, by contrast, the relation between stress and strain rate is r = where is... [Pg.430]

A wide variety of nonnewtonian fluids are encountered industrially. They may exhibit Bingham-plastic, pseudoplastic, or dilatant behavior and may or may not be thixotropic. For design of equipment to handle or process nonnewtonian fluids, the properties must usually be measured experimentally, since no generahzed relationships exist to pi e-dicl the properties or behavior of the fluids. Details of handling nonnewtonian fluids are described completely by Skelland (Non-Newtonian Flow and Heat Transfer, Wiley, New York, 1967). The generalized shear-stress rate-of-strain relationship for nonnewtonian fluids is given as... [Pg.565]

The transition to turbulent flow begins at Re R in the range of 2,000 to 2,500 (Metzuer and Reed, AIChE J., 1, 434 [1955]). For Bingham plastic materials, K and n must be evaluated for the condition in question in order to determine Re R and establish whether the flow is laminar. An alternative method for Bingham plastics is by Hanks (Hanks, AIChE J., 9, 306 [1963] 14, 691 [1968] Hanks and Pratt, Soc. Petrol. Engrs. J., 7, 342 [1967] and Govier and Aziz, pp. 213-215). The transition from laminar to turbulent flow is influenced by viscoelastic properties (Metzuer and Park, J. Fluid Mech., 20, 291 [1964]) with the critical value of Re R increased to beyond 10,000 for some materials. [Pg.640]

Power consumption for impellers in pseudoplastic, Bingham plastic, and dilatant nonnewtonian fluids may be calculated by using the correlating lines of Fig. 18-17 if viscosity is obtained from viscosity-shear rate cuiwes as described here. For a pseudoplastic fluid, viscosity decreases as shear rate increases. A Bingham plastic is similar to a pseudoplastic fluid but requires that a minimum shear stress be exceeded for any flow to occur. For a dilatant fluid, viscosity increases as shear rate increases. [Pg.1630]

For Newtonian fluids the dynamic viscosity is constant (Equation 2-57), for power-law fluids the dynamic viscosity varies with shear rate (Equation 2-58), and for Bingham plastic fluids flow occurs only after some minimum shear stress, called the yield stress, is imposed (Equation 2-59). [Pg.172]

For a Bingham plastic fluid flow in a circular pipe and annular space, the effective viscosities are given as [61]. [Pg.831]

For pipe flow of Bingham plastic type drilling fluid, the following can be used ... [Pg.836]

For annular flow of Bingham plastic and Power law fluids, respectively, PpLv T L... [Pg.836]

Because it is very difficult to measure the flow characteristics of a material at very low shear rates, behaviour at zero shear rate can often only be assessed by extrapolation of experimental data obtained over a limited range of shear rates. This extrapolation can be difficult, if not impossible. From Example 3.10 in Section 3.4.7, it can be seen that it is sometimes possible to approximate the behaviour of a fluid over the range of shear rates for which experimental results are available, either by a power-law or by a Bingham-plastic equation. [Pg.111]

As in the case of Newtonian fluids, one of the most important practical problems involving non-Newtonian fluids is the calculation of the pressure drop for flow in pipelines. The flow is much more likely to be streamline, or laminar, because non-Newtonian fluids usually have very much higher apparent viscosities than most simple Newtonian fluids. Furthermore, the difference in behaviour is much greater for laminar flow where viscosity plays such an important role than for turbulent flow. Attention will initially be focused on laminar-flow, with particular reference to the flow of power-law and Bingham-plastic fluids. [Pg.121]

For the flow of a Bingham-plastic fluid, the cross-section may be considered in two parts, as shown in Figure 3.32 ... [Pg.124]

Fluids whose behaviour can be approximated by the power-law or Bingham-plastic equation are essentially special cases, and frequently the rheology may be very much more complex so that it may not be possible to fit simple algebraic equations to the flow curves. It is therefore desirable to adopt a more general approach for time-independent fluids in fully-developed flow which is now introduced. For a more detailed treatment and for examples of its application, reference should be made to more specialist sources/14-17) If the shear stress is a function of the shear rate, it is possible to invert the relation to give the shear rate, y = —dux/ds, as a function of the shear stress, where the negative sign is included here because velocity decreases from the pipe centre outwards. [Pg.131]

A Bingham plastic material is flowing under streamline conditions in a pipe of circular cross-section. What are the conditions for one half of the total flow to be within the central core across which the velocity profile is fiat The shear stress acting within die fluid Ry varies with velocity gradient du,/dy according to the relation ... [Pg.829]

You must determine the horsepower required to pump a coal slurry through an 18 in. diameter pipeline, 300 mi long, at a rate of 5 million tons/yr. The slurry can be described by the Bingham plastic model, with a yield stress of 75 dyn/cm2, a limiting viscosity of 40 cP, and a density of 1.4 g/cm3. For non-Newtonian fluids, the flow is not sensitive to the wall roughness. [Pg.80]

Corresponding expressions for the friction loss in laminar and turbulent flow for non-Newtonian fluids in pipes, for the two simplest (two-parameter) models—the power law and Bingham plastic—can be evaluated in a similar manner. The power law model is very popular for representing the viscosity of a wide variety of non-Newtonian fluids because of its simplicity and versatility. However, extreme care should be exercised in its application, because any application involving extrapolation beyond the range of shear stress (or shear rate) represented by the data used to determine the model parameters can lead to misleading or erroneous results. [Pg.164]

The Bingham plastic model usually provides a good representation for the viscosity of concentrated slurries, suspensions, emulsions, foams, etc. Such materials often exhibit a yield stress that must be exceeded before the material will flow at a significant rate. Other examples include paint, shaving cream, and mayonnaise. There are also many fluids, such as blood, that may have a yield stress that is not as pronounced. [Pg.167]

For the Bingham plastic, there is no abrupt transition from laminar to turbulent flow as is observed for Newtonian fluids. Instead, there is a gradual deviation from purely laminar flow to fully turbulent flow. For turbulent flow, the friction factor can be represented by the empirical expression of Darby and Melson (1981) [as modified by Darby et al. (1992)] ... [Pg.169]

The slurry behaves as a non-Newtonian fluid, which can be described as a Bingham plastic with a yield stress of 40 dyn/cm2 and a limiting viscosity of 100 cP. Calculate the pressure gradient (in psi/ft) for this slurry flowing at a velocity of 8 ft/s in a 10 in. ID pipe. [Pg.475]

Polymer rheology can respond nonllnearly to shear rates, as shown in Fig. 3.4. As discussed above, a Newtonian material has a linear relationship between shear stress and shear rate, and the slope of the response Is the shear viscosity. Many polymers at very low shear rates approach a Newtonian response. As the shear rate is increased most commercial polymers have a decrease in the rate of stress increase. That is, the extension of the shear stress function tends to have a lower local slope as the shear rate is increased. This Is an example of a pseudoplastic material, also known as a shear-thinning material. Pseudoplastic materials show a decrease in shear viscosity as the shear rate increases. Dilatant materials Increase in shear viscosity as the shear rate increases. Finally, a Bingham plastic requires an initial shear stress, to, before it will flow, and then it reacts to shear rate in the same manner as a Newtonian polymer. It thus appears as an elastic material until it begins to flow and then responds like a viscous fluid. All of these viscous responses may be observed when dealing with commercial and experimental polymers. [Pg.65]


See other pages where Bingham plastics, fluid flow is mentioned: [Pg.640]    [Pg.298]    [Pg.14]    [Pg.465]    [Pg.787]    [Pg.795]    [Pg.644]    [Pg.303]    [Pg.196]    [Pg.832]    [Pg.170]    [Pg.360]    [Pg.425]    [Pg.100]    [Pg.89]    [Pg.90]    [Pg.91]    [Pg.94]    [Pg.94]   
See also in sourсe #XX -- [ Pg.399 , Pg.426 ]




SEARCH



Bingham

Bingham flow

Bingham plastic fluid

Bingham plasticity

Bingham plastics

Plastic Flow (Plasticity)

© 2024 chempedia.info