Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluid-dynamical

Computational Fluid Dynamics Applied to Process Engineering. [Pg.476]

Dey B D, Askar A and Rabitz H 1998 Multidimensional wave packet dynamics within the fluid dynamical formulation of the Schrddinger equation J. Chem. Phys. 109 8770-82... [Pg.1089]

If a fluid is placed between two concentric cylinders, and the inner cylinder rotated, a complex fluid dynamical motion known as Taylor-Couette flow is established. Mass transport is then by exchange between eddy vortices which can, under some conditions, be imagmed as a substantially enlranced diflfiisivity (typically with effective diflfiision coefficients several orders of magnitude above molecular difhision coefficients) that can be altered by varying the rotation rate, and with all species having the same diffusivity. Studies of the BZ and CIMA/CDIMA systems in such a Couette reactor [45] have revealed bifiircation tlirough a complex sequence of front patterns, see figure A3.14.16. [Pg.1112]

This method has been devised as an effective numerical teclmique of computational fluid dynamics. The basic variables are the time-dependent probability distributions f x, f) of a velocity class a on a lattice site x. This probability distribution is then updated in discrete time steps using a detenninistic local rule. A carefiil choice of the lattice and the set of velocity vectors minimizes the effects of lattice anisotropy. This scheme has recently been applied to study the fomiation of lamellar phases in amphiphilic systems [92, 93]. [Pg.2383]

C. Similarities Between Potentiai Fluid Dynamics and Quantum Mechanics... [Pg.161]

In writing the Lagrangean density of quantum mechanics in the modulus-phase representation, Eq. (140), one notices a striking similarity between this Lagrangean density and that of potential fluid dynamics (fluid dynamics without vorticity) as represented in the work of Seliger and Whitham [325]. We recall briefly some parts of their work that are relevant, and then discuss the connections with quantum mechanics. The connection between fluid dynamics and quantum mechanics of an electron was already discussed by Madelung [326] and in Holland s book [324]. However, the discussion by Madelung refers to the equations only and does not address the variational formalism which we discuss here. [Pg.161]

Unlike classical systems in which the Lagrangean is quadratic in the time derivatives of the degrees of freedom, the Lagrangeans of both quantum and fluid dynamics are linear in the time derivatives of the degrees of freedom. [Pg.162]

Computer modelling provides powerful and convenient tools for the quantitative analysis of fluid dynamics and heat transfer in non-Newtonian polymer flow systems. Therefore these techniques arc routmely used in the modern polymer industry to design and develop better and more efficient process equipment and operations. The main steps in the development of a computer model for a physical process, such as the flow and deformation of polymeric materials, can be summarized as ... [Pg.1]

Hughes, T. J. R., Franca, L. P. and Balestra, M., 1986. A new finite-element formulation for computational fluid dynamics. 5. Circumventing the Babuska-Brezzi condition - a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolations. Cornput. Methods Appl. Meek Eng. 59, 85-99. [Pg.109]

Diffusion in flowing fluids can be orders of magnitude faster than in nonfiowing fluids. This is generally estimated from continuum fluid dynamics simulations. [Pg.115]

Although the Arrhenius equation does not predict rate constants without parameters obtained from another source, it does predict the temperature dependence of reaction rates. The Arrhenius parameters are often obtained from experimental kinetics results since these are an easy way to compare reaction kinetics. The Arrhenius equation is also often used to describe chemical kinetics in computational fluid dynamics programs for the purposes of designing chemical manufacturing equipment, such as flow reactors. Many computational predictions are based on computing the Arrhenius parameters. [Pg.164]

The simplest case of fluid modeling is the technique known as computational fluid dynamics. These calculations model the fluid as a continuum that has various properties of viscosity, Reynolds number, and so on. The flow of that fluid is then modeled by using numerical techniques, such as a finite element calculation, to determine the properties of the system as predicted by the Navier-Stokes equation. These techniques are generally the realm of the engineering community and will not be discussed further here. [Pg.302]

Fluid dynamics Fluid energy mills Fluidization... [Pg.409]

K. Schuged and co-workers. Proceedings of the 2nd International Conference on Bioreactor Fluid Dynamics, British Hydromechanics Research Association, Cranfield, UK, 1988, p. 229. [Pg.337]

P. J. Roache, Computational Fluid Dynamics, Hermosa Pubhshers, Albuquerque, N.M., 1982. [Pg.112]

It has become quite popular to optimize the manifold design using computational fluid dynamic codes, ie, FID AP, Phoenix, Fluent, etc, which solve the full Navier-Stokes equations for Newtonian fluids. The effect of the area ratio, on the flow distribution has been studied numerically and the flow distribution was reported to improve with decreasing yiR. [Pg.497]

A numerical study of the effect of area ratio on the flow distribution in parallel flow manifolds used in a Hquid cooling module for electronic packaging demonstrate the useflilness of such a computational fluid dynamic code. The manifolds have rectangular headers and channels divided with thin baffles, as shown in Figure 12. Because the flow is laminar in small heat exchangers designed for electronic packaging or biochemical process, the inlet Reynolds numbers of 5, 50, and 250 were used for three different area ratio cases, ie, AR = 4, 8, and 16. [Pg.497]

Computer Models, The actual residence time for waste destmction can be quite different from the superficial value calculated by dividing the chamber volume by the volumetric flow rate. The large activation energies for chemical reaction, and the sensitivity of reaction rates to oxidant concentration, mean that the presence of cold spots or oxidant deficient zones render such subvolumes ineffective. Poor flow patterns, ie, dead zones and bypassing, can also contribute to loss of effective volume. The tools of computational fluid dynamics (qv) are useful in assessing the extent to which the actual profiles of velocity, temperature, and oxidant concentration deviate from the ideal (40). [Pg.57]

Third, design constraints are imposed by the requirement for controlled cooling rates for NO reduction. The 1.5—2 s residence time required increases furnace volume and surface area. The physical processes involved in NO control, including the kinetics of NO chemistry, radiative heat transfer and gas cooling rates, fluid dynamics and boundary layer effects in the boiler, and final combustion of fuel-rich MHD generator exhaust gases, must be considered. [Pg.435]

In cases where a large reactor operates similarly to a CSTR, fluid dynamics sometimes can be estabflshed in a smaller reactor by external recycle of product. For example, the extent of soflds back-mixing and Hquid recirculation increases with reactor diameter in a gas—Hquid—soflds reactor. Consequently, if gas and Hquid velocities are maintained constant when scaling and the same space velocities are used, then the smaller pilot unit should be of the same overall height. The net result is that the large-diameter reactor is well mixed and no temperature gradients occur even with a highly exothermic reaction. [Pg.517]


See other pages where Fluid-dynamical is mentioned: [Pg.183]    [Pg.664]    [Pg.686]    [Pg.27]    [Pg.18]    [Pg.79]    [Pg.287]    [Pg.640]    [Pg.332]    [Pg.335]    [Pg.72]    [Pg.101]    [Pg.112]    [Pg.483]    [Pg.496]    [Pg.55]    [Pg.67]    [Pg.67]    [Pg.19]    [Pg.302]    [Pg.510]    [Pg.513]    [Pg.513]    [Pg.518]   
See also in sourсe #XX -- [ Pg.218 ]




SEARCH



Fluid dynamics

© 2024 chempedia.info