Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fluctuation reactions

Reactive MPC dynamics should prove most useful when fluctuations in spatially distributed reactive systems are important, as in biochemical networks in the cell, or in situations where fluctuating reactions are coupled to fluid flow. [Pg.111]

The second and more likely source of deviations in the number of bound receptors from the mean behavior predicted by deterministic models is fluctuating reaction kinetics. Stated another way, the signal of ligand concentration analyzed earlier may be relatively constant, but the detector of surface receptors may contribute random errors caused by the probabilistic nature of the binding event. The rate constant for a... [Pg.68]

A reactive species in liquid solution is subject to pemianent random collisions with solvent molecules that lead to statistical fluctuations of position, momentum and internal energy of the solute. The situation can be described by a reaction coordinate X coupled to a huge number of solvent bath modes. If there is a reaction... [Pg.832]

Kramers solution of the barrier crossing problem [45] is discussed at length in chapter A3.8 dealing with condensed-phase reaction dynamics. As the starting point to derive its simplest version one may use the Langevin equation, a stochastic differential equation for the time evolution of a slow variable, the reaction coordinate r, subject to a rapidly statistically fluctuating force F caused by microscopic solute-solvent interactions under the influence of an external force field generated by the PES F for the reaction... [Pg.848]

In this equation, m. is the effective mass of the reaction coordinate, q(t -1 q ) is the friction kernel calculated with the reaction coordinate clamped at the barrier top, and 5 F(t) is the fluctuating force from all other degrees of freedom with the reaction coordinate so configured. The friction kernel and force fluctuations are related by the fluctuation-dissipation relation... [Pg.889]

Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case. Figure A3.8.3 Quantum activation free energy curves calculated for the model A-H-A proton transfer reaction described 45. The frill line is for the classical limit of the proton transfer solute in isolation, while the other curves are for different fully quantized cases. The rigid curves were calculated by keeping the A-A distance fixed. An important feature here is the direct effect of the solvent activation process on both the solvated rigid and flexible solute curves. Another feature is the effect of a fluctuating A-A distance which both lowers the activation free energy and reduces the influence of the solvent. The latter feature enliances the rate by a factor of 20 over the rigid case.
Porter C E and Thomas R G 1956 Fluctuations of nuclear reaction widths Phys. Rev. 104 483-91... [Pg.1043]

Miller W H 1988 Effect of fluctuations in state-specific unimolecular rate constants on the pressure dependence of the average unimolecular reaction rated. Phys. Chem. 92 4261-3... [Pg.1043]

In many instances tire adiabatic ET rate expression overestimates tire rate by a considerable amount. In some circumstances simply fonning tire tire activated state geometry in tire encounter complex does not lead to ET. This situation arises when tire donor and acceptor groups are very weakly coupled electronically, and tire reaction is said to be nonadiabatic. As tire geometry of tire system fluctuates, tire species do not move on tire lowest potential energy surface from reactants to products. That is, fluctuations into activated complex geometries can occur millions of times prior to a productive electron transfer event. [Pg.2976]

The most intriguing hydrocarbon of this molecular formula is named buUvalene, which is found in the mixture of products of the reaction given above. G. SchrOder (1963, 1964, 1967) synthesized it by a thermal dimerization presumably via diradicais of cyciooctatetraene and the photolytical cleavage of a benzene molecule from this dimer. The carbon-carbon bonds of buUvalene fluctuate extremely fast by thermal Cope rearrangements. 101/3 = 1,209,6(X) different combinations of the carbon atoms are possible. [Pg.332]

The rate of a reaction is temperature-dependent. To avoid a determinate error resulting from a systematic change in temperature or to minimize indeterminate errors due to fluctuations in temperature, the reaction cell must have a thermostat to maintain a constant temperature. [Pg.633]

Explosion-bonded metals are produced by several manufacturers in the United States, Europe, and Japan. The chemical industry is the principal consumer of explosion-bonded metals which are used in the constmction of clad reaction vessels and heat-exchanger tube sheets for corrosion-resistant service. The primary market segments for explosion-bonded metals are for corrosion-resistant pressure vessels, tube sheets for heat exchangers, electrical transition joints, and stmctural transition joints. Total world markets for explosion-clad metals are estimated to fluctuate between 30 x 10 to 60 x 10 annually. [Pg.152]

In the Godrej-Lurgi process, olefins are produced by dehydration of fatty alcohols on alumina in a continuous vapor-phase process. The reaction is carried out in a specially designed isothermal multitube reactor at a temperature of approximately 300°C and a pressure of 5—10 kPa (0.05—0.10 atm). As the reaction is endothermic, temperature is maintained by circulating externally heated molten salt solution around the reactor tubes. The reaction is sensitive to temperature fluctuations and gradients, hence the need to maintain an isothermal reaction regime. [Pg.440]

Historically, isobutyl alcohol was an unwanted by-product of the propylene Oxo reaction. Indeed, isobutyraldehyde the precursor of isobutyl alcohol was occasionally burned for fuel. However, more recentiy isobutyl alcohol has replaced -butyl alcohol in some appHcations where the branched alcohol appears to have preferred properties and stmcture. However, suppHes of isobutyl alcohol have declined relative to overall C-4 alcohols, especially in Europe, with the conversion of many Oxo plants to rhodium based processes which give higher normal to isobutyraldehyde isomer ratios. Further the supply of isobutyl alcohol at any given time can fluctuate greatly, since it is the lowest valued derivative of isobutyraldehyde, after neopentyl glycol, methyl isoamyl ketone and certain condensation products (10). [Pg.358]

Over the last decade production capacity in the United States remained essentially unchanged, but minor fluctuations occurred in response to changes in environmental regulations (38). A similar reaction was noted worldwide (35). The current demand for activated carbon is estimated at 93% of production capacity. The near-term growth in demand is projected to be approximately 5.5%/yr (39). [Pg.531]

To analy2e premixed turbulent flames theoretically, two processes should be considered (/) the effects of combustion on the turbulence, and (2) the effects of turbulence on the average chemical reaction rates. In a turbulent flame, the peak time-averaged reaction rate can be orders of magnitude smaller than the corresponding rates in a laminar flame. The reason for this is the existence of turbulence-induced fluctuations in composition, temperature, density, and heat release rate within the flame, which are caused by large eddy stmctures and wrinkled laminar flame fronts. [Pg.518]

Seb cic Acid. Sebacic acid [111-20-6] C QH gO, is an important intermediate in the manufacture of polyamide resins (see Polyamides). It has an estimated demand worldwide of approximately 20,000 t/yr. The alkaline hydrolysis of castor oil (qv), which historically has shown some wide fluctuations in price, is the conventional method of preparation. Because of these price fluctuations, there have been years of considerable interest in an electrochemical route to sebacic acid based on adipic acid [124-04-9] (qv) as the starting material. The electrochemical step involves the Kolbn-type or Brown-Walker reaction where anodic coupling of the monomethyl ester of adipic acid forms dimethyl sebacate [106-79-6]. The three steps in the reaction sequence from adipic acid to sebacic acid are as follows ... [Pg.102]


See other pages where Fluctuation reactions is mentioned: [Pg.172]    [Pg.2090]    [Pg.559]    [Pg.1260]    [Pg.104]    [Pg.199]    [Pg.200]    [Pg.192]    [Pg.172]    [Pg.2090]    [Pg.559]    [Pg.1260]    [Pg.104]    [Pg.199]    [Pg.200]    [Pg.192]    [Pg.56]    [Pg.832]    [Pg.833]    [Pg.884]    [Pg.885]    [Pg.890]    [Pg.1610]    [Pg.2271]    [Pg.2502]    [Pg.2815]    [Pg.2816]    [Pg.2991]    [Pg.3067]    [Pg.10]    [Pg.18]    [Pg.251]    [Pg.179]    [Pg.342]    [Pg.248]    [Pg.509]    [Pg.673]    [Pg.1633]    [Pg.1633]    [Pg.417]    [Pg.438]   


SEARCH



A non-linear biochemical reaction system with concentration fluctuations

Fluctuation-induced chemical reaction

Fluctuations droplet phase reactions

Fluctuations of the order parameter in chemical reactions

Irreversible A B — C reaction. Fluctuations of the concentration difference

Non-linear biochemical reactions with fluctuations

© 2024 chempedia.info