Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Flowmeters, velocity

Shirato, Gotoh, Osasa, and Usami [J. Chem. Eng. Japan, 1, 164— 167 (January 1968)] present a method for determining the mass flow rate of suspended sohds in a liqiiid stream wherein the liquid velocity is measured By an electromagnetic flowmeter and the flow of sohds is calculated from the pressure drops across each of two vertical sections of pipe of different diameter through which the suspension flows in series. [Pg.898]

Before taking the sample train to the test site, it is wise to prepare the operating curves for the particular job. With most factory-assembled trains, these curves are a part of the package. If a sampling train is assembled from components, the curves must be developed. The type of curves will vary from source to source and from train to train. Examples of useful operating curves include (1) velocity versus velocity pressure at various temperatures (6), (2) probe tip velocity versus flowmeter readings at various temperatures, and (3) flowmeter calibration curves of flow versus pressure drop. It is much easier to take an operaHng point from a previously prepared curve than to take out a calculator and pad to make the calculahons at the... [Pg.543]

In a recent study of the transport of coarse solids in a horizontal pipeline of 38 mrrt diameter, pressure drop, as a function not only of mixture velocity (determined by an electromagnetic flowmeter) but also of in-line concentration of solids and liquid velocity. The solids concentration was determined using a y-ray absorption technique, which depends on the difference in the attenuation of y-rays by solid and liquid. The liquid velocity was determined by a sail injection method,1"1 in which a pulse of salt solution was injected into the flowing mixture, and the time taken for the pulse to travel between two electrode pairs a fixed distance apart was measured, It was then possible, using equation 5.17, to calculate the relative velocity of the liquid to the solids. This relative velocity was found to increase with particle size and to be of the same order as the terminal falling velocity of the particles in the liquid. [Pg.207]

When a bluff body is interspersed in a fluid stream, the flow is split into two parts. The boundary layer (see Chapter 11) which forms over the surface of the obstruction develops instabilities and vortices are formed and then shed successively from alternate sides of the body, giving rise to what is known as a von Karman vortex street. This process sets up regular pressure variations downstream from the obstruction whose frequency is proportional to the fluid velocity, as shown by Strouai. 9. Vortex flowmeters are very versatile and can be used with almost any fluid — gases, liquids and multi-phase fluids. The operation of the vortex meter, illustrated in Figure 6.27, is described in more detail in Volume 3, by Gjnesi(8) and in a publication by a commercial manufacturer, Endress and Hauser.10 ... [Pg.266]

Experiments were carried out in a conical shape gas fluidized bed (0.1 m-i.d. x 0.6 m-high) that made of a transparent acryl column with an apex angle of 20°. The details of the conical fluidized beds can be found elsewhere [3]. Air velocity (Ug = 0-1.4 m/s) were measured by a flowmeter. The particle used in this study was 1.0 mm glass beads with a density of 2,500... [Pg.557]

The flow of fluids is most commonly measured using head flowmeters. The operation of these flowmeters is based on the Bernoulli equation. A constriction in the flow path is used to increase the flow velocity. This is accompanied by a decrease in pressure head and since the resultant pressure drop is a function of the flow rate of fluid, the latter can be evaluated. The flowmeters for closed conduits can be used for both gases and liquids. The flowmeters for open conduits can only be used for liquids. Head flowmeters include orifice and venturi meters, flow nozzles, Pitot tubes and weirs. They consist of a primary element which causes the pressure or head loss and a secondary element which measures it. The primary element does not contain any moving parts. The most common secondary elements for closed conduit flowmeters are U-tube manometers and differential pressure transducers. [Pg.268]

Other flowmeters are in common use which operate on principles differing from head flowmeters. Mechanical flowmeters have primary elements which contain moving parts. These flowmeters include rotameters, positive displacement meters and velocity meters. Electromagne-... [Pg.269]

Other commonly used mechanical flowmeters are velocity meters. [Pg.282]

Although electromagnetic flowmeters are expensive they are especially suitable for metering liquids containing suspended solids. Furthermore, unlike head flowmeters, they are unaffected by variations in fluid viscosity, density or temperature. Since they are also unaffected by turbulence or variations in velocity profile, they can be installed close to valves, bends, fittings, etc. [Pg.284]

The flowmeters discussed above are used either to measure velocity or volumetric flow rate. They can only be used to measure the mass flow rate if the fluid density is also measured and the volumetric flow rate and density signals are coordinated. [Pg.284]

Rotameters, velocity flowmeters, and electromagnetic flowmeters have the advantage that they can be used with a linear scale in which the volumetric flow rate Q is directly proportional to the scale reading s. [Pg.284]

For steady-state, isothermal, single-phase, uniform, fully developed newtonian flow in straight pipes, the velocity is greatest at the center of the channel and symmetric about the axis of the pipe. Of those flowmeters that are dependent on the velocity profile, they are usually calibrated for this type of flow. Thus any disturbances in flow conditions can affect flowmeter readings. [Pg.11]

This subsection summarizes selection and installation of flowmeters, including the measurement of pressure and velocities of fluids when the flow measurement technique requires it. [Pg.14]

Velocity Meters Velocity meters measure fluid velocity. Examples include electromagnetic, propeller, turbine, ultrasonic Doppler, ultrasonic transit time, and vortex meters. Section 8 describes the principles of operation of electromagnetic, turbine, ultrasonic, and vortex flowmeters. [Pg.14]

Other important classes of velocity meters include electromagnetic flowmeters and ultrasonic flowmeters. Both are described in Sec. 8. [Pg.21]

Laminar How is characterized by a parabolic flow profile where the maximum velucily at or near the center of the conduit is approximately twice the average velocity in the protile. Laminar flow often is referred to as vi.wrm.i flow, streamline flows, and low-Reynolds number flow. Special attention must be paid to the constancy of coefficient of most flowmeters in the region uf laminar flow. Sec also Reynolds Number. [Pg.908]

At velocities greater than the critical, the fluid velocity profile in the conduit is uniform across the conduit diameter except for a thin layer of fluid at the conduit wall. This boundary layer continues to move in laminar flow. In connection with flow measurement, most flowmeters have constant coefficients under turbulent flow conditions. Some flowmeters have the advantage of constant coefficients over Reynolds Number ranges encompassing both turbulent and laminar flows. See also Fluid and Fluid Flow and Reynolds Number. [Pg.1634]

Doppler ultrasonic flowmeters depend upon the reflection of a continuous ultrasonic wave (frequency 0.5-10 MHz) from particulate matter (scatterers) contained in the fluid. Hence they may be used to monitor the rate of flow of dirty liquids. The transducer involved can act both as transmitter and receiver and is generally of the clamp-on type (Fig. 6.4). If the scatterers can be assumed to be moving at the velocity of the liquid, then the volumetric rate of flow Q is related to the Doppler frequency shift AtoD by ... [Pg.444]

Two or more of these conditions can occur at the same time, resulting in asymmetric axial, radial and tangential velocity vectors. Some flowmeters are more sensitive than others to particular types of flow distortion, e.g. orifice meters are affected by pure swirl more than venturi meters are magnetic flowmeters are unaffected by changes in the radial velocity component whereas ultrasonic time-of-flight meters are highly susceptible thereto swirl and asymmetry have the least effect on positive displacement meters and the greatest effect on variable area meters. [Pg.450]

Among the renewable energy processes, it is the wind turbines that benefit the most from the measurement of wind direction and velocity. Doppler-type sensors are used to determine the wind velocity and to obtain three-dimensional air motion profiles and also in the balancing of HVAC systems and measuring of the velocity of wet and dirty gases in industry. For a more detailed discussion of Pitot tubes and thermal flowmeters, also refer to the Sections 3.9.7.2 and 3.9.10. Here, the focus is on mechanical- and Doppler-type anemometers. [Pg.380]

Head-type flowmeters include orifice plates, venturi tubes, weirs, flumes, and many others. They change the velocity or direction of the flow, creating a measurable differential pressure, or "pressure head," in the fluid. Head metering is one of the most ancient of flow detection techniques. There is evidence that the Egyptians used weirs for measurement of irrigation water flows in the days of the Pharaohs and that the Romans used orifices to meter water to households in Caesar s time. In the 18th century, Bernoulli established the basic relationship between the pressure head and velocity head, and Venturi published on the flow tube bearing his name. [Pg.399]

The detection of pressure drop across a restriction is undoubtedly the most widely used method of industrial flow measurement. If the density is constant, the pressure drop can be interpreted as a reading of the flow. In larger pipes or ducts, the yearly energy operating cost of differential-pressure (d/p)-type flowmeters can exceed the purchase price of the meter. The permanent pressure loss through a flowmeter is usually expressed in units of velocity heads, v2/2 g, where v is the flowing velocity, and g is the gravitational acceleration (9.819 m/s2, or 32.215 ft/s2, at 60° latitude). [Pg.399]

Velocity Head Requirements of the Different Flowmeter Designs... [Pg.400]

Flowmeter Type Permanent Pressure Loss (in velocity heads)... [Pg.400]


See other pages where Flowmeters, velocity is mentioned: [Pg.763]    [Pg.763]    [Pg.763]    [Pg.763]    [Pg.199]    [Pg.265]    [Pg.284]    [Pg.388]    [Pg.73]    [Pg.18]    [Pg.69]    [Pg.450]    [Pg.60]    [Pg.60]    [Pg.60]    [Pg.60]    [Pg.100]    [Pg.398]   
See also in sourсe #XX -- [ Pg.10 , Pg.11 , Pg.12 , Pg.13 , Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 ]




SEARCH



Flowmeters

Flowmeters, velocity turbine

© 2024 chempedia.info