Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer-type chromium carbene

The metal-free eyclobutane-1,2-dioxime can be generated by oxidative displacement. It is interesting to note that, unlike ketene dimerization, head-to-head dimerization takes place here. The chromium ketenimine complex 20 is prepared by reaction of the Fischer-type chromium carbene complex with alkyl isocyanides.60 A cyclobutane-1,2,3,4-tetraimine 24 has been reported from the reaction of the ketenimine phosphonium ylide 22.61 Bisimine 23 has been proposed as the intermediate in this transformation. [Pg.99]

Ring-closing metathesis using Gmbbs I mthenium catalyst 159 (2mol%) has also been used in the preparation of the Fischer-type chromium carbene complex 195 from the precursor 194 in near quantitative yield (Equation 23) <2001SL757>. The N-substituted tetrahydroazepine 197 could be prepared similarly in excellent yield from 196 (Equation 24) <2001JOC564>. [Pg.21]

Scheme 5.18 Photochemical transformations of Fischer-type chromium carbene complexes. Scheme 5.18 Photochemical transformations of Fischer-type chromium carbene complexes.
Ring closing metathesis using Grubbs ruthenium catalyst has also been used in a novel preparation of the Fischer-type chromium carbene complex 10 from the precursor 9 in >98% yield [01SL757], Similarly, the TV-substituted tetrahydroazepine 12 could be accessed in near quantitative yield from 11 [01JOC3564],... [Pg.386]

Beyond the use of the Fischer-type chromium carbenes as stoichiometric reagents and the Grubbs-type ruthenium carbenes as versatile catalysts for the preparation of organic compounds, Schrock s molybdenum and tungsten complexes of the general composition M(CHR)(NAr)(OR )2 (and derivatives thereof) and... [Pg.272]

The chiral Fischer-type chromium carbene complex of furan 28, shown in Scheme 14, participated in nucleophilic 1,4-addition with organolithium reagents followed hy alkylation in a regioselective and diastereoselective manner, creating a quaternary C-3 stereocenter in the 2,3-trisubstituted 2,3-dihydrofuran products after oxidative decom-plexation and reductive cleavage of the chiral auxiliary <2003CEJ5725>. [Pg.418]

Fischer-type chromium carbene complexes of furans underwent Dotz benzannulation with alkynes to provide trisubstituted benzo [, ]furan derivatives. An example used in the synthesis of isodityrosine is depicted in Equation (39) <2005JOC7422>. The efficiency of the reaction could be improved by ultrasound sonication <19990L1721>. [Pg.428]

Whereas Fischer-type chromium carbenes react with alkenes, dienes, and alkynes to afford cyclopropanes, vinylcyclopropanes, and aromatic compounds, the iron Fischer-type carbene (47, e.g. R = Ph) reacts with alkenes and dienes to afford primarily coupled products (58) and (59) (Scheme 21). The mechanism proposed involves a [2 -F 2] cycloaddition of the alkene the carbene to form a metallacyclobutane see Metallacycle) (60). This intermediate undergoes jS-hydride elimination followed by reductive elimination to generate the coupled products. Carbenes (47) also react with alkynes under CO pressure (ca. 3.7 atm) to afford 6-ethoxy-o -pyrone complexes (61). The unstable metallacyclobutene (62) is produced by the reaction of (47) with 2-butyne in the absence of CO. Complex (62) decomposes to the pyrone complex (61). It has been suggested that the intermediate (62) is transformed into the vinylketene complex... [Pg.2025]

Fischer-type chromium carbene complexes with 1-ethoxycyclopropylalkynyl substituents at the carbene carbon, e.g. 25, on reaction with dimethylamine and subsequent conversion of the resulting vinylcarbene with alkynes surprisingly did not give phenol derivatives, as would be expected from the known Dotz reaction, but gave cyclopenta[ )]pyrans, e.g. 26. The reaction is interpreted as a double alkyne-insertion/CO-insertion sequence with formation of a trienylketene intermediate, which undergoes intramolecular hetero-Diels-Alder cycloaddition and dimethylamine elimination. ... [Pg.1895]

In the case of using lactones as electrophiles in the presence of cerium trichloride, spiroketals are obtained after acidic work-up (90JA6389). Cyclic Fischer-type chromium carbene complexes (21) have also been prepared when hexacarbonyl chromium was added to intermediates (18), followed by treatment with trimethyloxonium tetrafluoroborate (Scheme 7) (92JCS(CC)1623). [Pg.141]

The vinylcarbene complexes Cr(CX))5 =C(OEt)C=CXR) (X = NMe2, OEt R = alkyl, aryl) react with alkynes R OCH to form various cyclopenta[b]pyrans.30S In a two step process, addition of the alkynes NEt20Chfe u> the l-metalla-l,3-diene W(CX))s =C(OEt)CHsCHHi) results in metallatriene species that cyclise U) fwm cyclopentadiene complexes 40. Chromium Fischer type alkoxyalkenyl carbene complexes react with ketoalkynes to fcxm bicyclic lactones in a number of different processes involving 8 and 10-e cyclizations. Various dienyl carbene complexes whose parent in Crortho-substituted aromatic alcohols through a variation upon the more usual benzannulation reaction involving alkyne cycloaddition with carbene complexes. ... [Pg.226]

A recent study by Frenking [84] investigated in great detail the influence of the carbene substitutents X and R at a pentacarbonyl-chromium Fischer-type complex. The electronic characteristics of these substituents control the reac-... [Pg.7]

At this point the catalytic process developed by Dotz et al. using diazoalkanes and electron-rich dienes in the presence of catalytic amounts of pentacar-bonyl(r]2-ds-cyclooctene)chromium should be mentioned. This reaction leads to cyclopentene derivatives in a process which can be considered as a formal [4S+1C] cycloaddition reaction. A Fischer-type non-heteroatom-stabilised chromium carbene complex has been observed as an intermediate in this reaction [23a]. [Pg.88]

Heteroatom-substituted (Fischer-type) carbene complexes are mostly used as stoichiometric reagents. For this reason only carbene complexes of reasonably cheap metals, such as chromium, molybdenum, tungsten, or iron have found broad application in organic synthesis. [Pg.34]

In addition to the reaction of vinylcarbene complexes with alkynes, further synthetic procedures have been developed in which Fischer-type carbene complexes are used for the preparation of benzenes. Most of these transformations are likely to be mechanistically related to the Dbtz benzannulation reaction, and can be rationalized as sequences of alkyne-insertions, CO-insertions, and electrocycli-zations. A selection of examples is given in Table 2.18. Entry 4 in Table 2.18 is an example of the Diels-Alder reaction (with inverse electron demand) of an enamine with a pyran-2-ylidene complex (see also Section 2.2.7 and Figure 2.36). In this example the adduct initially formed eliminates both chromium hexacarbonyl ([4 -I- 2] cycloreversion) and pyrrolidine to yield a substituted benzene. [Pg.55]

The reaction of alkoxy(alkyl)carbene chromium complexes with alkynes has been reported to give modest yields of cyclopentenones [368] and a few examples of intramolecular carbene C-H insertions of Fischer-type carbene complexes, leading to five-membered heterocycles, have been reported [369,370] (Table 2.22). [Pg.65]

The starting Fischer-type carbene complexes 1 were obtained by Michael addition of dimethylamine to the carbon-carbon triple bond of the corresponding ethoxy-(phenylethynyl)carbenes. In this regard, de Meijere and co-workers observed that the reactions of several primary and secondary amines with this sort of carbenes, in particular chromium derivatives 3 containing bulky substituents at the terminal carbon of the acetylenic unit, result in formation of the aminoallenylidene derivatives 5 as by-products of the expected Michael adducts 4 (Scheme 2) [20-24]. [Pg.223]

Historically, vinylidene complexes of zero-valent pentacarbonyl Group 6 metals appeared as a fleeting intermediate for the preparation of Fischer-type carbene complexes. Probably the first example of the formation of such a pentacarbonyl vinylidene complex of a Group 6 metal was proposed in 1974 by Fischer et al, who examined the reaction of pentacarbonyl[hydroxy(methyl)carbene] chromium 1 with dicyclohexylcarbodiimide(DCC) [3]. Thus, treatment of 1 with DCC in CH2CI2 at —20°C rt gave a novel azetidinylidene complex 2 in 47% yield. As a possible... [Pg.159]

In 1985, Dbtz et al. reported during a study on the reaction of Fischer-type carbene complexes with alkynes [10] that 2-oxacyclopentylidene chromium complex 24 was obtained as a side product. Thus, treatment ofmethyl(methoxy)carbene complex with 3-butynol at 70 °C in dibutyl ether gave the cyclic carbene complex 24 in 23% yield along with the desired metathesis product 23. The authors briefly commented that the cyclic carbene complex 24 might be obtained through the vinylidene complex 25, generated by the reaction of the alkyne with the liberated pentacarbonylchromium species (Scheme 5.7). [Pg.162]

Given these statements, it is not surprising that NHC complexes of almost all the transition metals have been prepared. In particular, metals incapable of 7i-back-donation such as titanium were only involved in Schrock-carbene complexes until the stable Fischer-type complexes were prepared from TiCU and imidazol-2-ylidenes (IV). The electronic properties of these NHC are also well illustrated in metallocene chemistry (a) 14-electron chromium(II) complexes have been isolated, (b) the displacement of a Cp ligand of chromocene and nickellocene can be achieved by imidazol-2-ylidenes (IV), giving bis(carbene) complexes (Scheme 8.26). [Pg.360]

Heinrich Dotz, from the Kekule-Institut (a predestined name ) of the University of Bonn, is another famous chemist who has given his name to a reaction. Coming from E. O. Fischer s school, he advantageously exploited his serendipitous discovery of the very rich reactivity of Fischer-type carbene complexes in synthesizing polycydic arene derivatives. This chromium-templated carbene benzannulation approach to densely functionalized arenes (Dotz reaction) is the subject of the chapter (No. 8) that he has co-authored with J. Stendel Jr. [Pg.15]

Heteroatom-stabilized carbene complexes of type 1, first discovered by E.O. Fischer in 1964 [1], nowadays belong to the best investigated classes of transition metal compounds. Such complexes are coordinatively saturated, intensely colored solids = 350-400 nm), which exhibit a sufficient stability for normal preparative use. Especially chromium carbene complexes (2) enjoy increasing importance in organic synthesis, and it must be added that thermal reactions such as benzannulations (i.e. the Ddtz reaction), cyclopropanations and additions to a,j8-unsatu-rated complexes clearly predominate [2J. [Pg.71]

Besides the thermal reactions of Fischer car-benes, photochemical transformations of such complexes also deserve attention. Since the discovery of McGuire and Hegedus [4] in the early 1980s that irradiation of chromium carbene complexes (4) with visible light in the presence of N-substituted benzaldimines (5) leads to (racemic) )ff-lactams of type 6, photolytic reactions of Fischer carbene complexes have been intensively investigated by L.S. Hegedus and his group in Fort Collins, Colorado [5]. [Pg.71]

The first carbene compound to be well characterized was prepared in 1966 and was one of many Fischer-Type Carbene Complexes to be reported (see equation 7). Fischer carbenes are characterized by heteroatom substituents at the carbene carbon, stabilization by a low-valent metal center, and a partial positive charge at the carbene carbon. In contrast, Schrock-Type Carbene Complexes, or alkylidenes," that have alkyl substituents, are found on metal centers in higher oxidation states, and are nucleophihc at carbon. Many Fischer carbenes are known for chromium, whereas chromium alkylidenes are much less common. Monohalocarbenes of chromium, for example, (OC)5Cr=C(F)NEt2, have also been extensively investigated." Two carbene reactions of note for their application to organic synthesis are the cycloaddition of alkenes with carbene complexes and the reaction of aromatic carbenes with aUcynes to yield complexed naphthols (the Dotz reaction ). ... [Pg.782]

Fischer-type carbenes can also be modified via transition metal catalyzed reactions. Fischer chromium aminocarbene complexes can be used as nucleophiles in palladium-catalyzed allyUc substitution reactions with aUylic acetates and carbonates, alFording the corresponding allyl-substituted aminocarbenes. For example, reaction of the Uthiated carbene (15) gives (16) in good yield (Scheme 25). ... [Pg.3222]

Fischer-type carbenes are known as potential carbene transfer reagents to electron-rich and electron-deficient alkenes. Little is known about the chemistry of carbene complexes with silicon substituents at the carbene C-atom, whereas complexes with germanium, tin, or lead have not yet been prepared. The tungsten-carbene complexes 6 react with an excess of ethyl vinyl ether to give l,2-diethoxy-l-(trialkylsilyl)cyclopropanes 7." Only the f-isomers were formed and similar results can be achieved by using the corresponding molybdenum or chromium complexes. On the other hand, no reaction takes place with 2,3-dihydrofuran or ethyl ( )-but-2-enoate. ... [Pg.832]

Alternatively, similar reactions were achieved with Fischer-type carbene complexes of chromium containing cyclopropane units 2. These react with alkenes, dienes and (x,/l-unsaturated esters to form dicyclopropanes 3 and 4 with small amounts of ring-opened products. [Pg.1889]


See other pages where Fischer-type chromium carbene is mentioned: [Pg.271]    [Pg.271]    [Pg.257]    [Pg.9]    [Pg.143]    [Pg.708]    [Pg.165]    [Pg.156]    [Pg.254]    [Pg.2023]    [Pg.368]    [Pg.148]    [Pg.261]    [Pg.297]    [Pg.1058]    [Pg.464]    [Pg.2022]    [Pg.231]    [Pg.191]   


SEARCH



Carbene Fischer carbenes

Chromium carbene

Fischer carbene

Fischer-type carbenes

Fischer-type chromium carbene complexes

© 2024 chempedia.info