Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Finite element dimensionality

The AUGUR information on defect configuration is used to develop the three-dimensional solid model of damaged pipeline weldment by the use of geometry editor. The editor options provide by easy way creation and changing of the solid model. This model is used for fracture analysis by finite element method with appropriate cross-section stress distribution and external loads. [Pg.196]

Let be a well-defined finite element, i.e. its shape, size and the number and locations of its nodes are known. We seek to define the variations of a real valued continuous function, such as/, over this element in terms of appropriate geometrical functions. If it can be assumed that the values of /on the nodes of Oj, are known, then in any other point within this element we can find an approximate value for/using an interpolation method. For example, consider a one-dimensional two-node (linear) element of length I with its nodes located at points A(xa = 0) and B(a b = /) as is shown in Figure 2.2. [Pg.20]

Standard procedures for the derivation of the shape functions of common types of finite elements can be illustrated in the context of two-dimensional triangular and rectangular elements. Let us, first, consider a triangular element having three nodes located at its vertices as is shown in Figure 2.6. [Pg.23]

The number of terms of a complete polynomial of any given degree will hence correspond to the number of nodes in a triangular element belonging to this family. An analogous tetrahedral family of finite elements that corresponds to complete polynomials in terms of three spatial variables can also be constructed for three-dimensional analysis. [Pg.24]

U-V-P schemes belong to the general category of mixed finite element techniques (Zienkiewicz and Taylor, 1994). In these techniques both velocity and pressure in the governing equations of incompressible flow are regarded as primitive variables and are discretized as unknowns. The method is named after its most commonly used two-dimensional Cartesian version in which U, V and P represent velocity components and pressure, respectively. To describe this scheme we consider the governing equations of incompressible non-Newtonian flow (Equations (1.1) and (1.4), Chapter 1) expressed as... [Pg.72]

The first finite element schemes for differential viscoelastic models that yielded numerically stable results for non-zero Weissenberg numbers appeared less than two decades ago. These schemes were later improved and shown that for some benchmark viscoelastic problems, such as flow through a two-dimensional section with an abrupt contraction (usually a width reduction of four to one), they can generate simulations that were qualitatively comparable with the experimental evidence. A notable example was the coupled scheme developed by Marchal and Crochet (1987) for the solution of Maxwell and Oldroyd constitutive equations. To achieve stability they used element subdivision for the stress approximations and applied inconsistent streamline upwinding to the stress terms in the discretized equations. In another attempt, Luo and Tanner (1989) developed a typical decoupled scheme that started with the solution of the constitutive equation for a fixed-flow field (e.g. obtained by initially assuming non-elastic fluid behaviour). The extra stress found at this step was subsequently inserted into the equation of motion as a pseudo-body force and the flow field was updated. These authors also used inconsistent streamline upwinding to maintain the stability of the scheme. [Pg.81]

Lagrangian-Eulerian (ALE) method. In the ALE technique the finite element mesh used in the simulation is moved, in each time step, according to a predetermined pattern. In this procedure the element and node numbers and nodal connectivity remain constant but the shape and/or position of the elements change from one time step to the next. Therefore the solution mesh appears to move with a velocity which is different from the flow velocity. Components of the mesh velocity are time derivatives of nodal coordinate displacements expressed in a two-dimensional Cartesian system as... [Pg.103]

Bell, B.C. and Surana, K. S, 1994. p-version least squares finite element formulations for two-dimensional, incompressible, non-Newtonian isothermal and non-isothcmial fluid flow. hit. J. Numer. Methods Fluids 18, 127-162. [Pg.108]

In this section the governing Stokes flow equations in Cartesian, polar and axisymmetric coordinate systems are presented. The equations given in two-dimensional Cartesian coordinate systems are used to outline the derivation of the elemental stiffness equations (i.e. the working equations) of various finite element schemes. [Pg.111]

Iterative solution methods are more effective for problems arising in solid mechanics and are not a common feature of the finite element modelling of polymer processes. However, under certain conditions they may provide better computer economy than direct methods. In particular, these methods have an inherent compatibility with algorithms used for parallel processing and hence are potentially more suitable for three-dimensional flow modelling. In this chapter we focus on the direct methods commonly used in flow simulation models. [Pg.199]

Many developers of software for finite-element analysis (18) provide drafting of pipelines and associated flow analysis. These companies include Algor, McAuto, MacNeal-Schwindler, and ElowDesign. In software, in-house developed pipe fittings are modularized and isometric views of the piping systems with three-dimensional detailing are now commonplace. [Pg.62]

Elliptic Equations Elhptic equations can be solved with both finite difference and finite element methods. One-dimensional elhptic problems are two-point boundary value problems. Two- and three-dimensional elliptic problems are often solved with iterative methods when the finite difference method is used and direct methods when the finite element method is used. So there are two aspects to consider howthe equations are discretized to form sets of algebraic equations and howthe algebraic equations are then solved. [Pg.480]

In reality, heat is conducted in all three spatial dimensions. While specific building simulation codes can model the transient and steady-state two-dimensional temperature distribution in building structures using finite-difference or finite-elements methods, conduction is normally modeled one-... [Pg.1066]

G. Dziuk. A boundary element method for curvature flow. Application to crystal growth. In J. E. Taylor, ed. Computational Crystal Growers Workshop, AMS Selected Lectures in Mathematics. Providence, Rhode Island American Mathematical Society, 1992, p. 34 A. Schmidt. Computation of three dimensional dendrites with finite elements. J Comput Phys 125 293, 1996. [Pg.917]

In order to compare the finite element model with the one-dimensional Chiao model, an extremely simple mesh of only five elements extending in a column from the laminate centerline to the outer surface was used to model the gradients in the laminate through-thickness direction. Figure 7 shows the reaction history (fractional concentration of reactive species, C, versus time) obtained from this run, selected at the location nearest the heated surface. This figure also shows the comparison with the quasi-isothermal and Chiao models. [Pg.278]

The presentation in this paper concentrates on the use of large-scale numerical simulation in unraveling these questions for models of two-dimensional directional solidification in an imposed temperature gradient. The simplest models for transport and interfacial physics in these processes are presented in Section 2 along with a summary of the analytical results for the onset of the cellular instability. The finite-element analyses used in the numerical calculations are described in Section 3. Steady-state and time-dependent results for shallow cell near the onset of the instability are presented in Section 4. The issue of the presence of a fundamental mechanism for wavelength selection for deep cells is discussed in Section 5 in the context of calculations with varying spatial wavelength. [Pg.300]

The basic scheme for the numerical solution is the same as that used for the 1 -D model, except that in this case the solid temperature field used to solve the DAE system for each monolith channel must be calculated from the three-dimensional solid-phase energy balance equation. The three-dimensional energy balance equation can be solved by a nonlinear finite element solver (such as ABAQUS) for the solid-phase temperature field while a nonlinear finite difference solver for the DAE system calculates the gas-phase temperature and... [Pg.14]

While most authors have used the finite-difference method, the finite element method has also been used—e.g., a two-dimensional finite element model incorporating shrinkable subdomains was used to de.scribe interroot competition to simulate the uptake of N from the rhizosphere (36). It included a nitrification submodel and found good agreement between ob.served and predicted uptake by onion on a range of soil types. However, while a different method of solution was used, the assumptions and the equations solved were still based on the Barber-Cushman model. [Pg.341]

Avalosse, Th., and Crochet, M. J., Finite element simulation of mixing 1. Two-dimensional flow in periodic geometry. AlChE J. 43, 577-587 (1997a). [Pg.199]


See other pages where Finite element dimensionality is mentioned: [Pg.283]    [Pg.283]    [Pg.17]    [Pg.21]    [Pg.27]    [Pg.79]    [Pg.94]    [Pg.141]    [Pg.142]    [Pg.156]    [Pg.209]    [Pg.223]    [Pg.288]    [Pg.427]    [Pg.548]    [Pg.481]    [Pg.353]    [Pg.607]    [Pg.128]    [Pg.103]    [Pg.138]    [Pg.276]    [Pg.12]    [Pg.309]    [Pg.358]    [Pg.178]    [Pg.57]    [Pg.149]    [Pg.122]    [Pg.36]   
See also in sourсe #XX -- [ Pg.283 ]




SEARCH



Finite element analysis three-dimensional

Finite-element

Three-Dimensional Finite Element Method

Three-dimensional finite element simulation

Two-dimensional finite element method

© 2024 chempedia.info