Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Film models dissolution-precipitation model

The instantaneous nucleation-growth-precipitation model [39] assumes that the film is formed directly on the substrate, without previous dissolution however, it was observed that active dissolution of the metal occurs. Therefore, Equations 8.11 through 8.13 were examined and rewritten considering metal dissolution, that is, terms corresponding to dissolution were added to the mathematical expressions ... [Pg.205]

The interfacial barrier theory is illustrated in Fig. 15A. Since transport does not control the dissolution rate, the solute concentration falls precipitously from the surface value, cs, to the bulk value, cb, over an infinitesimal distance. The interfacial barrier model is probably applicable when the dissolution rate is limited by a condensed film absorbed at the solid-liquid interface this gives rise to a high activation energy barrier to the surface reaction, so that kR kj. Reaction-controlled dissolution is somewhat rare for organic compounds. Examples include the dissolution of gallstones, which consist mostly of cholesterol,... [Pg.356]

The second-generation point defect model (PDM-II) [39] addressed the deficiencies of the previous model by incorporating a bilayer structure of the film consisting of a defective oxide layer on the metal surface and an outer layer that is formed by precipitation of products firom the reaction of transmitted cations firom the underlying metal with species in the environment. PDM-II assumed that the barrier layer controls the passive current and recognized the barrier layer dissolution and the need to distinguish whether the reactions are lattice conservative or nonconservative. The model also introduced the metal interstitials to the suite of defects. The model is in agreement with experimental results. Model PDM-III extends the apphcation of the PDM model and addresses the formation of multiple passive layers at the outer layer [40]. [Pg.154]

Numerous studies have attempted to elucidate the role of Mo in the passivity of stainless steel. It has been proposed from XPS studies that Mo forms a solid solution with CrOOH with the result tiiat Mo is inhibited from dissolving trans-passively [9]. Others have proposed that active sites are rapidly covered with molybdenum oxyhydroxide or molybdate salts, thereby inhibiting localized corrosion [10]. Yet another study proposed that molybdate is formed by oxidation of an Mo dissolution product [11]. The oxyanion is then precipitated preferentially at active sites, where repassivation follows. It has also been proposed that in an oxide lattice dominated by three-valent species of Cr and Fe, ferrous ions will be accompanied by point defects. These defects are conjectured to be canceled by the presence of four- and six-valent Mo species [1]. Hence, the more defect-free film will be less able to be penetrated by aggressive anions. A theoretical study proposed a solute vacancy interaction model in which Mo " is assumed to interact electrostatically with oppositely charged cation vacancies [ 12]. As a consequence, the cation vacancy flux is gradually reduced in the passive film from the solution side to the metal-film interface, thus hindering vacancy condensation at the metal-oxide interface, which the authors postulate acts as a precursor for localized film breakdown [12]. [Pg.223]


See other pages where Film models dissolution-precipitation model is mentioned: [Pg.201]    [Pg.462]    [Pg.386]    [Pg.126]    [Pg.74]    [Pg.275]    [Pg.280]    [Pg.264]    [Pg.122]    [Pg.157]    [Pg.335]    [Pg.389]    [Pg.249]    [Pg.152]    [Pg.226]    [Pg.271]    [Pg.345]    [Pg.336]    [Pg.337]    [Pg.200]    [Pg.335]    [Pg.379]    [Pg.696]    [Pg.294]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Dissolution model

Dissolution-precipitation model

Dissolution/precipitation

Film dissolution

Film models model

Model precipitation

Precipitate dissolution

© 2024 chempedia.info