Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fillers dispersion regions

An example of a practical dielec trofilter which uses both of the features described, namely, sharp electrodes and dielectric field-warping filler materials, is that described in Fig. 22-34 [H. I. Hall and R. F. Brown, Lubric. Eng., 22, 488 (1966)]) It is intended for use with hydrauhc fluids, fuel oils, lubricating oils, transformer oils, lubricants, and various refineiy streams. Performance data are cited in Fig. 22-35. It must be remarked that in the opinion of Hall and Brown the action of the dielec trofilter was electrostatic and due to free charge on the particles dispersed in the hquids. It is the present authors opinion, however, that both elec trophoresis and dielectrophoresis are operative here but that the dominant mechanism is that of DEP, in wdiich neutral particles are polarized and attracted to the regions of highest field intensity. [Pg.2013]

The failure of systems with dispersed fillers (exemplified by polystyrene plus glass spheres with different treatment) was studied by subjecting specimens to deformation in the microscope field [255,256]. Where adhesion was good the cracks were observed to be formed near the glass sphere pole, in regions corresponding to the maximum deformation, where adhesion was poor, anywhere between the pole and the equator. It was discovered that microcracks began to... [Pg.36]

A similar thing takes place when we consider flow curves obtained at different temperatures. As seen from Fig. 7, if we take a region of low shear rates, then due to the absence of the temperature dependence Y, the apparent activation energy vanishes. At sufficiently high shear rates, when a polymer dispersion medium flows, the activation energy becomes equal to the activation energy of the viscous flow of a polymer melt and the presence of the filler in this ratio is of little importance. [Pg.87]

The fact that the appearance of a wall slip at sufficiently high shear rates is a property inwardly inherent in filled polymers or an external manifestation of these properties may be discussed, but obviously, the role of this effect during the flow of compositions with a disperse filler is great. The wall slip, beginning in the region of high shear rates, was marked many times as the effect that must be taken into account in the analysis of rheological properties of filled polymer melts [24, 25], and the appearance of a slip is initiated in the entry (transitional) zone of the channel [26]. It is quite possible that in reality not a true wall slip takes place, but the formation of a low-viscosity wall layer depleted of a filler. This is most characteristic for the systems with low-viscosity binders. From the point of view of hydrodynamics, an exact mechanism of motion of a material near the wall is immaterial, since in any case it appears as a wall slip. [Pg.87]

As regards shear flow the role of particle s geometry of the filler is rather unambiguous with an increase in the ratio between the length of the filler and their diameter the viscosity of equiconcentrated dispersions increases [22], as it is schematically shown in Fig. 13. For the region q> -> 0 this effect results in an increase in the initial angle of slope of tangents to the dependences r)sp([Pg.89]

Modification of filler s surface by active media leads to the same strong variation in viscosity. We can point out as an example the results of work [8], in which the values of the viscosity of dispersions of CaC03 in polystyrene melt were compared. For q> = 0.3 and the diameter of particles equal to 0.07 nm a treatment of the filler s surface by stearic acid caused a decrease in viscosity in the region of low shear rates as compared to the viscosity of nontreated particles more than by ten times. This very strong result, however, should not possibly be understood only from the point of view of viscometric measurements. The point is that, as stated above, a treatment of the filler particles affects its ability to netformation. Therefore for one and the same conditions of measuring viscosity, the dispersions being compared are not in equivalent positions with respect to yield stress. Thus, their viscosities become different. [Pg.90]

Nearly every polymeric system absorbs some moisture under normal atmospheric conditions from the air. This can be a difficult to detect, very small amount as for polyethylene or a few percent as measured for nylons. The sensitivity for moisture increases if a polymer is used in a composite system i.e. as a polymeric matrix with filler particles or fibres dispersed in it. Hater absorption can occur then into the interfacial regions of filler/fibre and matrix [19]. Certain polymeric systems, like coatings and cable insulation, are for longer or shorter periods immersed in water during application. After water absorption, the dielectric constant of polymers will increase due to the relative high dielectric constant of water (80). The dielectric losses will also increase while the volume resistivity decreases due to absorbed moisture. Thus, the water sensitivity of a polymer is an important product parameter in connection with the polymer s electrical properties. The mechanical properties of polymers are like the electrical properties influenced by absorption of moisture. The water sensitivity of a polymer is therefore in Chapter 7 indicated as one of the key-parameters of a polymeric system. [Pg.151]

Finally, shear viscosity is strongly affected by the clay in the blends, especially at high PEN contents. A lubricating effect rather than a filler effect reveals the possibility that the clay is not well dispersed in the polymer blend, and migration of particles in the flow to the wall region can explain the observed reduction in shear viscosity. When MMT clay is mixed with crystallizable polymers such as polyesters, some processing problems arise because the crystallization process is modifled by nucleation effects induced by the nanoparticles. Moreover, these particles also influence the kinetics of transesteriflcation between PET and PEN, besides other factors such as the reaction time and extruder processing temperature. In Reference 72, a quaternary alkyl ammonium compound (Cl8) and MAH were used to modify the surface properties of the clay... [Pg.588]

Basically, birefringence is the contribution to the total birefringence of two-phase materials, due to deformation of the electric field associated with a propagating ray of light at anisotropically shaped phase boundaries. The effect may also occur with isotropic particles in an isotropic medium if they dispersed with a preferred orientation. The magnitude of the effect depends on the refractive index difference between the two phases and the shape of the dispersed particles. In thermoplastic systems the two phases may be crystalline and amorphous regions, plastic matrix and microvoids, or plastic and filler. See amorphous plastic coefficient of optical stress compact disc crystalline plastic directional property, anisotropic ... [Pg.112]


See other pages where Fillers dispersion regions is mentioned: [Pg.40]    [Pg.94]    [Pg.156]    [Pg.723]    [Pg.242]    [Pg.264]    [Pg.552]    [Pg.713]    [Pg.249]    [Pg.543]    [Pg.339]    [Pg.24]    [Pg.1311]    [Pg.81]    [Pg.90]    [Pg.141]    [Pg.785]    [Pg.485]    [Pg.301]    [Pg.142]    [Pg.125]    [Pg.494]    [Pg.170]    [Pg.179]    [Pg.161]    [Pg.241]    [Pg.156]    [Pg.93]    [Pg.117]    [Pg.428]    [Pg.767]    [Pg.109]    [Pg.168]    [Pg.86]    [Pg.168]    [Pg.118]    [Pg.548]   
See also in sourсe #XX -- [ Pg.695 ]




SEARCH



Dispersion region

Filler dispersion

Fillers dispersibility

© 2024 chempedia.info