Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Feature 20-2 Antioxidants

This addition is general, extending to nitrogen, oxygen, carbon, and sulfur nucleophiles. This reactivity of the quinone methide (23) is appHed in the synthesis of a variety of stabili2ers for plastics. The presence of two tert-huty groups ortho to the hydroxyl group, is the stmctural feature responsible for the antioxidant activity that these molecules exhibit (see Antioxidants). [Pg.61]

Diarylamiaes fuactioa as mbber antioxidants by breaking the peroxidative chain reactions leading to mbber deterioration. Nearly all commercial synthetic mbbers (see Elastomers, synthetic), including neoprene, butyl, styrene—butadiene, and the acrylonitrile—butadiene mbbers, can be protected with about 1—2% of an alkylated diphenylamine. DPA itself is not used as a mbber antioxidant. An objectionable feature of these antioxidants is that they cause discoloration and staining which limits their use to applications where this is not important. [Pg.244]

The present method is applicable with slight modifications to the preparation of both the ortho and para aminonaphthols and to many homologues, benzologues, and heterocyclic isologues of these substances. The chief feature of novelty is in the use of stannous chloride as an antioxidant in preparing and crystallizing the amine hydrochlorides. [Pg.14]

Bio activities found for some of the polysaccharides described in this chapter have been assigned to certain structural features. The antioxidant effect of the Cuscuta chinensis pectin was proposed to be caused by the presence of a glucobiose unit linked via a GalA unit on the RG-I polymer [53], but this structural feature was not found for the anti-oxidant polysaccharide from Tinospora cordifolia [78,79]. [Pg.96]

Whilst not an exhaustive list the compounds given in Table 8.2 do represent the major classes of antioxidant. One feature that is clear from this Table is that these antioxidants tend to be effective in many different polymers. [Pg.123]

The use of real food systems for detailed studies of antioxidants is complicated by a large number of factors which are often unknown or cannot be controlled due to the complex nature of foods. Using simplified model systems, which mimic the main features of a given food system, or antioxidant assays for quantifying the antioxidant action, can be very helpful in clarifying the action of potential antioxidants (Aruoma, 1996 Moller et al, 1999 Prior and Cao, 1999 Frankel and Meyer, 2000). The extrapolation of conclusions based on the behaviour of model systems or antioxidant assays to real complex food systems should generally be done with great care, and should ideally be based on results from more than one model system or assay (Frankel and Meyer, 2000). [Pg.331]

The literature on basic- and acid-catalyzed alkylation of phenol and of its derivatives is wide [1,2], since this class of reactions finds industrial application for the synthesis of several intermediates 2-methylphenol as a monomer for the synthesis of epoxy cresol novolac resin 2,5-dimethylphenol as an intermediate for the synthesis of antiseptics, dyes and antioxidants 2,6-dimethylphenol used for the manufacture of polyphenylenoxide resins, and 2,3,6-trimethylphenol as a starting material for the synthesis of vitamin E. The nature of the products obtained in phenol methylation is affected by the surface characteristics of the catalyst, since catalysts having acid features address the electrophilic substitution in the ortho and para positions with respect to the hydroxy group (steric effects in confined environments may however affect the ortho/para-C-alkylation ratio), while with basic catalysts the ortho positions become the... [Pg.347]

Figure 15 presents a qualitative comparison of different oxidation types on histidine ACW. Hence, the ACP cannot be seen to be characteristic for antioxidant defense, but more likely it is a feature of prehistory connected with the free-radical processes, reflecting the degree of oxidative stress. [Pg.516]

One of the present authors (31) has developed a series of additives which combine the features of both free radical inhibitors and flame retardants of the tetrabromophthalimide or chlorendic imide type with hindered phenol antioxidant structures such as the following compounds ... [Pg.102]

Nitroxyl radicals as alkyl radical acceptors are known to be very weak antioxidants due to the extremely fast addition of dioxygen to alkyl radicals (see Chapter 2). They retard the oxidation of solid polymers due to specific features of free radical reactions in the solid polymer matrix (see Chapter 19). However, the combination of two inhibitors, one is the peroxyl radical acceptor (phenol, aromatic amine) and another is the alkyl radical acceptor (nitroxyl radical) showed the synergistic action [44-46]. The results of testing the combination of nitroxyl radical (>NO ) (2,2,6,6-tetramethyl-4-benzoylpiperidine-l-oxyl) + amine (phenol) in the autoxidation of nonene-1 at 393 K are given here ([>NO ]o + [InH]o = 1.5 x 10 4mol L 1 p02 98 kPa) [44]. [Pg.631]

The phenomena of relatively high activity of alkyl radical acceptors as antioxidants in solid polymer media seems to be the result of a line peculiarities of free radical reactions in the polymer matrix. Let us compare the features of these reactions in solution and polymer media. [Pg.671]

The raison d etre for the proliferation of flavone and flavonol glycosides in nature continues to intrigue plant scientists. The ability of UV-B radiation to damage DNA, RNA, and proteins as well as to impair processes like photosynthesis is well known. Most flavonoids are very efficient antioxidants and chemoprotectants, and are therefore used in a plethora of food supplements and nutraceuticals [30]. Some flavonoids, however, have a Janus face - they could be excellent antioxidants but also have negative features. [Pg.127]

Anthocyanins have the potential to moderate the total oxidative load via three mechanisms. First, they can chelate to copper and iron, thereby decreasing the possibility of hydroxyl radical production from Haber-Weiss reactions. These chelates might also protect other low molecular weight antioxidants (LMWAs), such as ascorbate and a-tocopherol, from autoxidation by transition metals.Anthocyanin-transition metal chelation has been demonstrated in vitro many times,but is unlikely to feature significantly in planta. [Pg.407]

NO also reduces endothelial adhesion of monocytes and leukocytes, key features of the early development of atheromatous plaques. This effect is due to the inhibitory effect of NO on the expression of adhesion molecules on the endothelial surface. In addition, NO may act as an antioxidant, blocking the oxidation of low-density lipoproteins and thus preventing or reducing the formation of foam cells in the vascular wall. Plaque formation is also affected by NO-dependent reduction in endothelial cell permeability to lipoproteins. The importance of eNOS in cardiovascular disease is supported by experiments showing increased atherosclerosis in animals deficient in eNOS by pharmacologic inhibition. Atherosclerosis risk factors, such as smoking, hyperlipidemia, diabetes, and hypertension, are associated with decreased endothelial NO production, and thus enhance atherogenesis. [Pg.422]

In recent years Emanuel, Neiman, and their respective schools have greatly contributed to the theory of antioxidant action by studying the phenomenon of the critical antioxidant concentration in terms of a degenerate branched chain reaction. The critical antioxidant concentration, a well-established feature of phenolic antioxidants, is one below which autoxidation is autocatalytic and above which it proceeds at a slow and steady rate. Since the theory allowed not only a satisfactory explanation of the critical antioxidant concentration itself but elucidation of many refinements, such as the greater than expected activity of multifunctional phenolic antioxidants (21), we wondered whether catalyst-inhibitor conversion could be fitted into its framework. If degenerate chain branching is assumed to be the result of... [Pg.178]

In general, optimal antioxidant activity of flavonoid is associated with the presence of multiple phenolic groups (hydroxyl groups increase the antioxidant activity, whereas methoxy groups suppress it), a carbonyl group at C-4, and free C3 and C5 hydroxyl groups. All these structural features are summarised in Fig. (2). [Pg.573]

Citrus-flavoured drinks, notably lemon drinks, are frequently susceptible to oxidation and so antioxidants may feature in their formulation. [Pg.122]


See other pages where Feature 20-2 Antioxidants is mentioned: [Pg.124]    [Pg.215]    [Pg.329]    [Pg.64]    [Pg.79]    [Pg.241]    [Pg.241]    [Pg.410]    [Pg.121]    [Pg.361]    [Pg.131]    [Pg.191]    [Pg.261]    [Pg.308]    [Pg.391]    [Pg.151]    [Pg.7]    [Pg.338]    [Pg.40]    [Pg.337]    [Pg.412]    [Pg.206]    [Pg.131]    [Pg.140]    [Pg.150]    [Pg.625]    [Pg.139]    [Pg.4]    [Pg.92]    [Pg.143]    [Pg.412]   


SEARCH



© 2024 chempedia.info