Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction spray towers

Spray Drying and Agglomeration. Most instant coffee products are spray-dried. Stainless steel towers with a concurrent flow of hot ak and atomized extract droplets are utilized for this purpose. Atomization, through pressure nozzles, is controUed based on selection of the nozzles, properties of the extract, pressures used, bulk density, and capacity requkements. Low inlet ak temperatures (200—280°C) are preferred for best flavor quaHty. The spray towers must be provided with adequate dust coUection systems such as cyclones or bag filters. The dried particles are coUected from the conical bottom of the spray drier through a rotary valve and conveyed to bulk storage bins or packaging lines. Processors may screen the dry product to... [Pg.388]

Spray Towers These are simple gravity extractors, consisting of empty towers with provisions for introducing and removing liquids at the ends (see Fig. 15-32). The interface can be run above the top distributor, below the bottom distributor, or in the middle, depending on where the best performance is achieved. Because of severe axial back mixing, it is difficult to achieve the equivalent of more than one or two theoretical stages or transfer units on one side of the interface. For this reason they have only rarely been applied in extraction applications. [Pg.1474]

Equipment suitable for reactions between hquids is represented in Fig. 23-37. Almost invariably, one of the phases is aqueous with reactants distributed between phases for instance, NaOH in water at the start and an ester in the organic phase. Such reac tions can be carried out in any kind of equipment that is suitable for physical extraction, including mixer-settlers and towers of various kinds-, empty or packed, still or agitated, either phase dispersed, provided that adequate heat transfer can be incorporated. Mechanically agitated tanks are favored because the interfacial area can be made large, as much as 100 times that of spray towers, for instance. Power requirements for L/L mixing are normally about 5 hp/1,000 gal and tip speeds of turbine-type impellers are 4.6 to 6.1 i7i/s (15 to 20 ft/s). [Pg.2116]

Extraction (sometimes called leaching) encompasses liquid-liquid as well as liquid-solid systems. Liquid-liquid extraction involves the transfer of solutes from one liquid phase into another liquid solvent it is normally conducted in mixer settlers, plate and agitated-tower contacting equipment, or packed or spray towers. Liquid-solid extraction, in which a liquid solvent is passed over a solid phase to remove some solute, is carried out in fixed-bed, moving-bed, or agitated-solid columns. [Pg.141]

Tests are made on the extraction of acetic acid from a dilute aqueous solution by means of a ketone in a small spray tower of diameter 46 mm and effective height of 1090 mm with the aqueous phase run into the top of the tower. The ketone enters free from acid at the rate of 0.0014 m3/sm2, and leaves with an acid concentration of 0.38 kmol/m3. The concentration in the aqueous phase falls from 1.19 to 0.82 kmol/m3. [Pg.183]

A laboratory test is carried out into the extraction of acetic acid from dilute aqueous solution, by means of methyl iso-butyl ketone, using a spray tower of 47 mm diameter and 1080 mm high. The aqueous liquor is run into the top of the tower and the ketone enters at the bottom. [Pg.184]

It is required to design a spray tower for the extraction of benzoic acid from its solution in benzene. [Pg.189]

As Sherwood and Pigford(3) point out, the use of spray towers, packed towers or mechanical columns enables continuous countercurrent extraction to be obtained in a similar manner to that in gas absorption or distillation. Applying the two-film theory of mass transfer, explained in detail in Volume 1, Chapter 10, the concentration gradients for transfer to a desired solute from a raffinate to an extract phase are as shown in Figure 13.19, which is similar to Figure 12.1 for gas absorption. [Pg.737]

Ruby, C. L. and Elgin, J. C. Mass transfer—Transport properties. Chem. Eng. Prog. Symp. Series No. 16, 51 (1955) 17. Mass transfer between liquid drops and a continuous liquid phase in a countercurrent fluidized system. Liquid-liquid extraction in a spray tower. [Pg.768]

Although the most useful extraction process is with countercurrent flow in a multistage battery, other modes have some application. Calculations may be performed analytically or graphically. On flowsketches like those of Example 14.1 and elsewhere, a single box represents an extraction stage that may be made up of an individual mixer and separator. The performance of differential contactors such as packed or spray towers is commonly described as the height equivalent to a theoretical stage (HETS) in ft or m. [Pg.463]

A study on the hydrolysis of fats with water was conducted at 230 to 260°C (446 to 500°F) and 41 to 48 atm (600 to 705 psi) in a continuous commercial spray tower. A small amount of water dissolved in the fat and reacted to form an acid and glycerine. Most of the glycerine migrated to the water phase. The tower was operated at about 18 percent of flooding at which condition the HETS was found to be about 9 m (30 ft) compared with an expected 6 m (20 ft) for purely physical extraction [Jeffreys, Jenson, and Miles, Trans. Inst. Chem. Eng. 39 389-396 (1961)]. [Pg.47]

The simplest extraction tower is the spray tower. The droplets of the dispersed phase are generated only once at the input. The extraction efficiency of these towers is very low, due to the broad range of droplet diameter and poor interface renewal. Additionally, the back-mixing effects increase dramatically by increasing the ratio between diameter and height of the column. The throughput is generally influenced by the density difference and the viscosity of the two phases. [Pg.39]


See other pages where Extraction spray towers is mentioned: [Pg.1479]    [Pg.1480]    [Pg.268]    [Pg.668]    [Pg.42]    [Pg.624]    [Pg.1302]    [Pg.1303]    [Pg.1873]    [Pg.749]    [Pg.2132]    [Pg.195]    [Pg.626]    [Pg.2118]   
See also in sourсe #XX -- [ Pg.626 ]




SEARCH



Spray towers

© 2024 chempedia.info