Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extinction number

The intensity of a spectral absorption band at a given wave length is expressed in terms of absorption or extinction coefficients, dehned on the basis of the Beer-Lambert law. The latter states that the fraction of incident light absorbed is proportional to the number of molecules in the light path, i.e., to the concentration (c) and the path length (1). The law may be expressed mathematically as ... [Pg.1135]

In thin sections natural graphite is translucent, strongly pleochroic, and uniaxial. It has a negative sign of birefringence and two extinctions per revolution under crossed Nicol prisms. The atomic number of carbon accounts for its low absorption coefficient for x-rays and electrons. [Pg.572]

I Splitting the arc into a number of series arcs (Figure 19.1 I) so that the input power to the arc becomes less than the heat dissipated during the process of deionization, The more efficient the process of cooling, the better w ill be the chances of avoiding a restrike and achieving a quicker extinction of the arc. [Pg.630]

Extinction Coefficient a measure of the ability of particles or gases to absorb and scatter photons from a beam of light a number that is proportional to the number of photons removed from the sight path per unit length. See absorption. Extinction Cross Section the amount of light scattered and absorbed by a particle divided by its physical cross section. [Pg.529]

The product mixture contains essentially oxygenated compounds (acids, alcohols, esters, aldehydes, ketones, etc.). As many as 13 distillation columns are used to separate the complex mixture. The number of products could he reduced hy recycling most of them to extinction. [Pg.182]

An irreversible extinction of the SHG signal at 150-200°C is observed for a number of other fluoride and oxyfluoride compounds of tantalum and niobium that crystallize in centrosymmetric space groups. This phenomenon is especially typical for the compounds prepared by precipitation from solutions [206]. The appearance of the weak SHG signal for such compounds is related to imperfections in their crystal structure and the creation of dipoles. Nevertheless, appropriate thermal treatment improves the structure and leads to the disappearance of dipoles and to the irreversible disappearance of the corresponding SHG signal. [Pg.230]

The flow structures of lean limit methane and propane flames are compared in Figures 3.1.2 and 3.1.3. The structure depends on the Lewis number for the deficient reactant. A stretched lean limit methane flame (Lepreferential diffusion, giving it a higher burning intensity. Hence, the flame extinction limit is extended. On the other hand, for a stretched lean limit propane flame (Le>l), the same effect reduces the burning intensity, which can... [Pg.16]

Sato, ]., Effects of Lewis number on extinction behavior of premixed flames in a stagnation flow, Proc. Combust. Inst., 19, 1541,1982. [Pg.117]

Strain Rate Extinction. We performed a sequence of strain rate calculations for an 8.4% and a 9.3% (mole fraction) hydrogen-air flame. The equivalence ratios of these flames are = 0.219 and = 0.245, respectively. In both cases the Lewis number of the deficient reactant (hydrogen) was significantly less than one. In particular, at the input jet, the Lewis numbers were equal to 0.29 for both the 8.4% flame and the 9.3% flame. We also found that these values did not change by more than 15% through the flame. [Pg.412]

A number of theoretical (5), (19-23). experimental (24-28) and computational (2), (23), (29-32). studies of premixed flames in a stagnation point flow have appeared recently in the literature. In many of these papers it was found that the Lewis number of the deficient reactant played an important role in the behavior of the flames near extinction. In particular, in the absence of downstream heat loss, it was shown that extinction of strained premixed laminar flames can be accomplished via one of the following two mechanisms. If the Lewis number (the ratio of the thermal diffusivity to the mass diffusivity) of the deficient reactant is greater than a critical value, Lee > 1 then extinction can be achieved by flame stretch alone. In such flames (e.g., rich methane-air and lean propane-air flames) extinction occurs at a finite distance from the plane of symmetry. However, if the Lewis number of the deficient reactant is less than this value (e.g., lean hydrogen-air and lean methane-air flames), then extinction occurs from a combination of flame stretch and incomplete chemical reaction. Based upon these results we anticipate that the Lewis number of hydrogen will play an important role in the extinction process. [Pg.412]

The right part of equation [4], E = e c d, represents Lambert-Beer s law. E is called the extinction, c is the substance concentration, and d is the thickness of the sample. The E values span from 0 (this is the case when all light is transmitted and no absorption takes place, i.e., 1 = Iq) to inhnity, °o (this is the case of maximal extinction when no incident light is transmitted, i.e., 1 = 0). Realistic E values that can be correctly measured by normal spectrometers range between 0 and 2. Instead of using the E expression for extinction, A for absorbance is often used. E and A are dimensionless values, i.e., numbers without units. Nevertheless, OD, the symbol for optical density, is often added to E and A in order to clarify their meanings. [Pg.12]

One factor which should be noted for palladium, which also applies to the observation of the transition metals Is that not all crystallites have the same efficiency for diffracting electrons, l.e., as the atomic number decreases, the extinction distance for the crystallite Increases (13). Thus one would anticipate Chat as the mean atomic number decreases, the crystallites will have Co be progressively larger to enable visual observation on a support such as alumina. [Pg.380]

In equation (5), T is the turhidity, O.D. is the optical density measvired from the photometer, N is the number density of parti-cles, X is the optical path length and Rext extinction... [Pg.16]


See other pages where Extinction number is mentioned: [Pg.376]    [Pg.193]    [Pg.97]    [Pg.45]    [Pg.632]    [Pg.267]    [Pg.367]    [Pg.55]    [Pg.180]    [Pg.139]    [Pg.115]    [Pg.237]    [Pg.705]    [Pg.338]    [Pg.307]    [Pg.395]    [Pg.20]    [Pg.58]    [Pg.64]    [Pg.120]    [Pg.141]    [Pg.142]    [Pg.142]    [Pg.155]    [Pg.162]    [Pg.164]    [Pg.416]    [Pg.155]    [Pg.203]    [Pg.207]    [Pg.266]    [Pg.510]    [Pg.43]    [Pg.44]    [Pg.265]    [Pg.265]   


SEARCH



Extinction

© 2024 chempedia.info