Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental shear viscosity

In non-Newtonian fluids K a also depends on their physical and rheoiogical properties. The contribution of the latter has been normally expressed in terms of the apparent viscosity, and there is general agreement that this dependence is of the form Kj a 0(11 ) % where z can take values between 0.4 to 0.7. In the case of viscoelastic materials, inclusion of the fluid rheology is less straightforward. Several authors have tried to include the effect of elasticity via the Deborah number, which for stirred tanks is defined as the product of a characteristic time of the fluid and impeller speed. However, determination of the former is not an easy task because it is not always possible to characterize experimentally the viscoelastic properties of the fluid. Determination of the characteristic time of the fluid from experimental shear viscosity vs. shear rate curves [29] and from interpolation of published experimental data on viscoelastic properties [30] has been tried in the past. However, values thus obtained are not necessarily representative of the actual behavior of the liquid. At present, inclusion of the Deborah number in dimensional or dimensionless correlations has not been completely successful. [Pg.447]

Much less investigated are simple dense molecular fluids which contain relatively large molecules of roughly globular shape. Recently, liquid SF was studied with use of a six-center potential (Hoheisel 1993). For several dense states of SFg, experimental shear viscosities and thermal conductivities are compared with computer data in Table 9.4. The comparison shows significant discrepancies. Apparently, the potential parameters optimized with respect to thermodynamic properties are insufficient for the description of dynamic properties. Hence, the interaction in liquid SF seems to be more anisotropic than describable by a six-center U potential. [Pg.206]

Shear viscosity is a measure of the ahihty of one layer of molecules to move over an adjacent layer. Bulk viscosity will be mentioned in Section V.2. Since viscosity usually refers to shear viscosity, the term will he used in this way unless otherwise stated. Recommended techniques for measuring the viscosity of high-temperature melt are given below. Experimental data are available from the database mentioned in Section 1.2. Data on viscosities of slags (7 single component systems, 35 two-component... [Pg.167]

The experimental zero-shear viscosities obtained for polystyrene (PS) of different molar masses (with a very narrow molar mass distribution Mw/Mn=1.06-1.30) and different concentrations in toluene and fra s-decalin are plotted as log r sp vs. log (c- [r ]) in Fig. 6. [Pg.17]

Fig. 10. Experimental values of the gel stiffness S plotted against the relaxation exponent n for crosslinked polycaprolactone at different stoichiometric ratios [59]. The dashed line connects the equilibrium modulus of the fully crosslinked material (on left axis) and the zero shear viscosity of the precursor (on right axis)... Fig. 10. Experimental values of the gel stiffness S plotted against the relaxation exponent n for crosslinked polycaprolactone at different stoichiometric ratios [59]. The dashed line connects the equilibrium modulus of the fully crosslinked material (on left axis) and the zero shear viscosity of the precursor (on right axis)...
An unusually extensive battery of experimental techniques was brought to bear on these comparisons of enantiomers with their racemic mixtures and of diastereomers with each other. A very sensitive Langmuir trough was constructed for the project, with temperature control from 15 to 40°C. In addition to the familiar force/area isotherms, which were used to compare all systems, measurements of surface potentials, surface shear viscosities, and dynamic suface tensions (for hysteresis only) were made on several systems with specially designed apparatus. Several microscopic techniques, epi-fluorescence optical microscopy, scanning tunneling microscopy, and electron microscopy, were applied to films of stearoylserine methyl ester, the most extensively investigated surfactant. [Pg.133]

The results of Equation (3.56) are plotted in Figure 3.14. It can be seen that shear thinning will become apparent experimentally at (p > 0.3 and that at values of q> > 0.5 no zero shear viscosity will be accessible. This means that solid-like behaviour should be observed with shear melting of the structure once the yield stress has been exceeded with a stress controlled instrument, or a critical strain if the instrumentation is a controlled strain rheometer. The most recent data24,25 on model systems of nearly hard spheres gives values of maximum packing close to those used in Equation (3.56). [Pg.87]

This result is interesting, since it gives the slip length as a function of parameters that can be measured experimentally or a priori, for simple systems in a linear approximation. The bulk shear viscosity can be approximated from the literature, and the monolayer density can be determined from optical techniques. To a first approximation, for rigidly adsorbed layers, the sliptime is related to the autocorrelation function of random momentum fluctuations in the film, given by [40]... [Pg.67]

Polymer rheology can respond nonllnearly to shear rates, as shown in Fig. 3.4. As discussed above, a Newtonian material has a linear relationship between shear stress and shear rate, and the slope of the response Is the shear viscosity. Many polymers at very low shear rates approach a Newtonian response. As the shear rate is increased most commercial polymers have a decrease in the rate of stress increase. That is, the extension of the shear stress function tends to have a lower local slope as the shear rate is increased. This Is an example of a pseudoplastic material, also known as a shear-thinning material. Pseudoplastic materials show a decrease in shear viscosity as the shear rate increases. Dilatant materials Increase in shear viscosity as the shear rate increases. Finally, a Bingham plastic requires an initial shear stress, to, before it will flow, and then it reacts to shear rate in the same manner as a Newtonian polymer. It thus appears as an elastic material until it begins to flow and then responds like a viscous fluid. All of these viscous responses may be observed when dealing with commercial and experimental polymers. [Pg.65]

This article reviews the following solution properties of liquid-crystalline stiff-chain polymers (1) osmotic pressure and osmotic compressibility, (2) phase behavior involving liquid crystal phasefs), (3) orientational order parameter, (4) translational and rotational diffusion coefficients, (5) zero-shear viscosity, and (6) rheological behavior in the liquid crystal state. Among the related theories, the scaled particle theory is chosen to compare with experimental results for properties (1H3), the fuzzy cylinder model theory for properties (4) and (5), and Doi s theory for property (6). In most cases the agreement between experiment and theory is satisfactory, enabling one to predict solution properties from basic molecular parameters. Procedures for data analysis are described in detail. [Pg.85]

Rubber-based nanocomposites were also prepared from different nanofillers (other than nanoclays) like nanosilica etc. Bandyopadhyay et al. investigated the melt rheological behavior of ACM/silica and ENR/silica hybrid nanocomposites in a capillary rheometer [104]. TEOS was used as the precursor for silica. Both the rubbers were filled with 10, 30 and 50 wt% of tetraethoxysilane (TEOS). The shear viscosity showed marginal increment, even at higher nanosilica loading, for the rubber/silica nanocomposites. All the compositions displayed pseudoplastic behavior and obeyed the power law model within the experimental conditions. The... [Pg.24]

Surface shear rheology at the oil-water interface is a sensitive probe of protein-polysaccharide interactions. In particular, there is considerable experimental evidence for a general increase in surface shear viscosity of protein adsorbed layers as a result of interfacial complexation with polysaccharides (Dickinson et al., 1998 Dickinson and Euston, 1991 Dickinson and Galazka, 1992 Semenova et al., 1999a Jourdain et al., 2009). One such example is the case of asi-casein + pectin at pH = 5.5 and ionic strength = 0.01 M (Ay = - 334 x 10 cm /mol) the interfacial viscosity after 24 hours was found to be five times larger in the presence of pectin (i.e., values of 820 80 and 160 20 mN m 1 with and without pectin, respectively) (Semenova et al., 1999a). [Pg.271]

Adamson [15] and Miller et al. [410] illustrate some techniques for measuring surface shear viscosity. Further details on the principles, measurement and applications to foam stability of interfacial viscosity are reviewed by Wasan et al. [301,412], It should be noted that most experimental studies deal with the bulk and surface viscosities of bulk solution rather than the rheology of films themselves. [Pg.194]

Non-Newtonian Viscosity In the cone-and-plate and parallel-disk torsional flow rheometer shown in Fig. 3.1, parts la and 2a, the experimentally obtained torque, and thus the % 2 component of the shear stress, are related to the shear rate y = y12 as follows for Newtonian fluids T12 oc y, implying a constant viscosity, and in fact we know from Newton s law that T12 = —/ . For polymer melts, however, T12 oc yn, where n < 1, which implies a decreasing shear viscosity with increasing shear rate. Such materials are called pseudoplastic, or more descriptively, shear thinning Defining a non-Newtonian viscosity,2 t],... [Pg.84]

This section describes two common experimental methods for evaluating i], Fj, and IG as functions of shear rate. The experiments involved are the steady capillary and the cone-and-plate viscometric flows. As noted in the previous section, in the former, only the steady shear viscosity function can be determined for shear rates greater than unity, while in the latter, all three viscometric functions can be determined, but only at very low shear rates. Capillary shear viscosity measurements are much better developed and understood, and certainly much more widely used for the analysis of polymer processing flows, than normal stress difference measurements. It must be emphasized that the results obtained by both viscometric experiments are independent of any constitutive equation. In fact, one reason to conduct viscometric experiments is to test the validity of any given constitutive equation, and clearly the same constitutive equation parameters have to fit the experimental results obtained with all viscometric flows. [Pg.94]

Sewell and co workers [145-148] have performed molecular dynamics simulations using the HMX model developed by Smith and Bharadwaj [142] to predict thermophysical and mechanical properties of HMX for use in mesoscale simulations of HMX-containing plastic-bonded explosives. Since much of the information needed for the mesoscale models cannot readily be obtained through experimental measurement, Menikoff and Sewell [145] demonstrate how information on HMX generated through molecular dynamics simulation supplement the available experimental information to provide the necessary data for the mesoscale models. The information generated from molecular dynamics simulations of HMX using the Smith and Bharadwaj model [142] includes shear viscosity, self-diffusion [146] and thermal conductivity [147] of liquid HMX. Sewell et al. have also assessed the validity of the HMX flexible model proposed by Smith and Bharadwaj in molecular dynamics studies of HMX crystalline polymorphs. [Pg.164]


See other pages where Experimental shear viscosity is mentioned: [Pg.146]    [Pg.323]    [Pg.146]    [Pg.323]    [Pg.482]    [Pg.829]    [Pg.250]    [Pg.280]    [Pg.20]    [Pg.386]    [Pg.388]    [Pg.395]    [Pg.116]    [Pg.122]    [Pg.187]    [Pg.114]    [Pg.343]    [Pg.348]    [Pg.95]    [Pg.192]    [Pg.377]    [Pg.446]    [Pg.56]    [Pg.265]    [Pg.92]    [Pg.102]    [Pg.214]    [Pg.70]    [Pg.75]    [Pg.130]    [Pg.167]    [Pg.135]    [Pg.218]    [Pg.21]    [Pg.128]    [Pg.205]    [Pg.300]   
See also in sourсe #XX -- [ Pg.2 , Pg.145 ]

See also in sourсe #XX -- [ Pg.2 , Pg.145 ]




SEARCH



Viscosity shear

© 2024 chempedia.info