Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental procedures flow rate

Thixotropy and Other Time Effects. In addition to the nonideal behavior described, many fluids exhibit time-dependent effects. Some fluids increase in viscosity (rheopexy) or decrease in viscosity (thixotropy) with time when sheared at a constant shear rate. These effects can occur in fluids with or without yield values. Rheopexy is a rare phenomenon, but thixotropic fluids are common. Examples of thixotropic materials are starch pastes, gelatin, mayoimaise, drilling muds, and latex paints. The thixotropic effect is shown in Figure 5, where the curves are for a specimen exposed first to increasing and then to decreasing shear rates. Because of the decrease in viscosity with time as weU as shear rate, the up-and-down flow curves do not superimpose. Instead, they form a hysteresis loop, often called a thixotropic loop. Because flow curves for thixotropic or rheopectic Hquids depend on the shear history of the sample, different curves for the same material can be obtained, depending on the experimental procedure. [Pg.168]

Another instance in which the constant-temperature method is used involves the direc t application of experimental KcO values obtained at the desired conditions of inlet temperatures, operating pressure, flow rates, and feed-stream compositions. The assumption here is that, regardless of any temperature profiles that may exist within the actu tower, the procedure of working the problem in reverse will yield a correct result. One should be cautious about extrapolating such data veiy far from the original basis and be carebil to use compatible equilibrium data. [Pg.1360]

The schematic diagram of the experimental setup is shown in Fig. 2 and the experimental conditions are shown in Table 2. Each gas was controlled its flow rate by a mass flow controller and supplied to the module at a pressure sli tly higher than the atmospheric pressure. Absorbent solution was suppUed to the module by a circulation pump. A small amount of absorbent solution, which did not permeate the membrane, overflowed and then it was introduced to the upper part of the permeate side. Permeation and returning liquid fell down to the reservoir and it was recycled to the feed side. The dry gas through condenser was discharged from the vacuum pump, and its flow rate was measured by a digital soap-film flow meter. The gas composition was determined by a gas chromatograph (Yanaco, GC-2800, column Porapak Q for CO2 and (N2+O2) analysis, and molecular sieve 5A for N2 and O2 analysis). The performance of the module was calculated by the same procedure reported in our previous paper [1]. [Pg.410]

Much LC-MS work is carried out in a qualitative or semi-quantitative mode. Development of quantitative LC-MS procedures for polymer/additive analysis is gaining attention. When accurate quantitation is necessary, it is important to understand in depth the experimental factors which influence the quantitative response of the entire LC-MS system. These factors, which include solvent composition, solvent flow-rate, and the presence of co-eluting species, exert a major influence on analyte mass transport and ionisation efficiency. Analyte responses in MS procedures can be significantly affected by the nature of the organic modifier used in the RPLC... [Pg.512]

The design for the surface water-collector system is determined by an allowable flow rate divided by a required flow rate. Allowable rates for geocomposites are determined experimentally by exactly the same method as for geonets. The specific cross section used in the test procedure should replicate the intended design as closely as possible. For the required flow rate, Darcy s law or HELP36 37 can be used. Then the design-by-function concept is used to determine the DR, or FS. [Pg.1139]

All solutions of Eqs. (3) such as that by Yu and Sparrow (Yl) yield the velocity profiles in each phase as a function of the interfacial position h and the pressure drop. The volumetric flow rates Qt and Q are obtained by integrating each velocity profile over the respective phase cross-sectional area. The ratio of the flow rates can then be determined as a function of only the interfacial position, and since the volumetric flow rates are known, this yields an implicit fourth order equation for the interfacial position h. The holdups Rt and Rn can be calculated once the interfacial position is known. Since each equation for the volumetric flow rates is linear with respect to the pressure drop, once the interfacial position is known the pressure drop may be easily computed. An analytical procedure for determining pressure drop and holdup for turbulent gas-laminar liquid flows has been developed by Etchells (El) and verified by comparison with experimental data in horizontal systems (A7). [Pg.19]

The experimental procedure Is approximately standard chromatography. First, we set the desired column temperature and adjust the detector and injector temperatures to values about 30°C higher. Next we adjust the inlet and outlet pressure and measure the flow rate. Then, we set the detector current and attenuation to give maximum sensitivity with an acceptable baseline (typically the current is 50 mA with an attenuation of 1). For injections, we draw 1/2 the desired air into the syringe followed by the sample followed by the remaining 1/2 of the desired air. We establish the desired amount of air by trial and error to obtain a proper peak size. [Pg.369]

The intestinal permeability may be determined from the rate of drug appearance in mesenteric blood (i.e. dM/dt) at steady state, using Eq. 2.12. Estimating the term C[ en will again depend on the flow dynamics of the model chosen. The most commonly used experimental procedure is the single-pass perfusion (i.e. parallel tube model) and the luminal concentration can be estimated using the logarithmic mean of inlet and outlet concentrations (i.e. ). [Pg.52]

Abstract A preconcentration method using Amberlite XAD-16 column for the enrichment of aluminum was proposed. The optimization process was carried out using fractional factorial design. The factors involved were pH, resin amount, reagent/metal mole ratio, elution volume and samphng flow rate. The absorbance was used as analytical response. Using the optimised experimental conditions, the proposed procedure allowed determination of aluminum with a detection limit (3o/s) of 6.1 ig L and a quantification limit (lOa/s) of 20.2 pg L, and a precision which was calculated as relative standard deviation (RSD) of 2.4% for aluminum concentration of 30 pg L . The preconcentration factor of 100 was obtained. These results demonstrated that this procedure could be applied for separation and preconcentration of aluminum in the presence of several matrix. [Pg.313]

Active crystal face of vanadyl pyrophosphate for selective n-butane oxidation catalyst preparation, 157-158 catalyst weight vs. butane oxidation, 162,163/ catalytic activity, 162,1 (At catalytic reaction procedure, 158 experimental description, 157 flow rate of butane vs. butane oxidation, 162,163/ fractured SiOj-CVO PjO scanning electron micrographs, 160,161/ fractured scanning electron... [Pg.449]

For a given ICP-OES instrument, the intensity of an analyte line is a complex function of several factors. Some adjustable parameters that affect the ICP source are the radiofrequency power coupled into the plasma (usually about 1 kW), the gas flow rates, the observation height in the lateral-viewing mode and the solution uptake rate of the nebuliser. Many of these factors interact in a complex fashion and their combined effects are different for dissimilar spectral lines. The selection of an appropriate combination of these factors is of critical importance in ICP-OES. This issue will be addressed in Chapter 2, where experimental designs and optimisation procedures will be discussed. Many examples related to ICP and other atomic spectrometric techniques will be presented. [Pg.15]

Whereas in the example just described the sample amount was about 50 mg, a similar procedure developed by another group 129) started with 4 g polyethylene copolymer. The sample was applied as a dilute solution in xylene and precipitated by very slow cooling (1.5 K/h) onto the Chromosorb P packing of a 500 x 127 mm column. The first separation was temperature-rising elution fractionation at a flow-rate of 20 ml/min and a Unear temperature increase by 8 K/h. The MMD of the fractions was measured by SEC at 145 °C in o-dichlorobenzene at 0.7 ml/min flow rate. The column set included a pair of bimodal columns 100 A and 1000 A plus a 4000 A column. The apparatus was equipped with an IR detector. The experimental data is computed to show the distribution of short-chain branching and of molar mass simultaneously. [Pg.205]


See other pages where Experimental procedures flow rate is mentioned: [Pg.510]    [Pg.774]    [Pg.323]    [Pg.32]    [Pg.262]    [Pg.446]    [Pg.570]    [Pg.36]    [Pg.323]    [Pg.118]    [Pg.11]    [Pg.5]    [Pg.194]    [Pg.248]    [Pg.469]    [Pg.700]    [Pg.227]    [Pg.153]    [Pg.347]    [Pg.566]    [Pg.148]    [Pg.786]    [Pg.507]    [Pg.106]    [Pg.223]    [Pg.353]    [Pg.305]    [Pg.105]    [Pg.185]    [Pg.114]    [Pg.261]    [Pg.85]    [Pg.207]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Experimental procedures

© 2024 chempedia.info