Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental procedure analysis

Designing an experimental procedure involves selecting an appropriate method of analysis based on established criteria, such as accuracy, precision, sensitivity, and detection limit the urgency with which results are needed the cost of a single analysis the number of samples to be analyzed and the amount of sample available for... [Pg.5]

An automated system for clinical analysis consists of the instmment (hardware), the reagents, and the experimental conditions (time, temperature, etc) required for each deterrnination. The reagents plus the experimental conditions are sometimes referred to as the chemistry of the system. The chemistry employed is generally similar to that used in manual assays because most automated assay methods have been adapted from the manual ones. However, automated analy2ers rarely afford the flexibiUty of experimental procedure that is possible in manual analysis. [Pg.392]

This latter value (tp) is given by power analysis software ancl can be obtained as a power curve. Figure 11.24 shows a series of power curves giving the samples sizes required to determine a range of differences. From these curves, for example, it can be seen that a sample size of 3 will be able to detect a difference of 0.28 with a power of 0.7 (70% of time) but that a sample size of 7 would be needed to increase this power to 90%. In general, power analysis software can be used to determine sample sizes for optimal experimental procedures. [Pg.254]

The most used method is based on application of the Mayo equation (eq. 5). For low (zero) conversion polymerizations carried out in the presence of added transfer agent T, it follows from eq. 5 that a plot of 1/ Xn vs [T]0/[M]0 should yield a straight line with slope Clr.12 Thus, a typical experimental procedure involves evaluation of the degree of polymerization for low conversion polymerizations earned out in the presence of several concentrations of added transfer agent. The usual way of obtaining Xn values is by GPC analysis of the entire molecular weight distribution. [Pg.283]

The results of activation analysis are subject to well known and common analytical sources of uncertainty, as well as method specific uncertainties, e.g. summarized by Greenberg (1997), and also in Section 2.2. In order for INAA experiments to measure differences in induced activity, i.e. differences due to heterogeneity in the amount of analyte in a given test portion, the experimental procedure is designed to allow only the following uncertainties to be part of the result ... [Pg.135]

As field desorption (FD) refers to an experimental procedure in which a solution of the sample is deposited on the emitter wire situated at the tip of the FD insertion probe, it is suited for handling lubricants as well as polymer/additive dissolutions (without precipitation of the polymer or separation of the additive components). Field desorption is especially appropriate for analysis of thermally labile and high-MW samples. Considering that FD has a reputation of being difficult to operate and time consuming, and in view of recent competition with laser desorption methods, this is probably the reason that FD applications of polymer/additive dissolutions are not frequently being considered by experimentalists. [Pg.702]

Stephens ML, Mendoza P, Hamilton T, Weaver A (1998) Unrelieved pain and distress in animals an analysis of USDA data on experimental procedures. J Appl Anim Welf Sci 1 15-26... [Pg.88]

Perhaps the most discouraging type of deviation from linearity is random scatter of the data points. Such results indicate that something is seriously wrong with the experiment. The method of analysis may be at fault or the reaction may not be following the expected stoichiometry. Side reactions may be interfering with the analytical procedures used to follow the progress of the reaction, or they may render the mathematical analysis employed invalid. When such plots are obtained, it is wise to reevaluate the entire experimental procedure and the method used to evaluate the data before carrying out additional experiments in the laboratory. [Pg.49]

Two conditions must be met if this conclusion is to be revealed by the analysis. First, appropriate experimental procedures must be adopted to assure establishment of elastic equilibrium. Second, the contribution to the stress from restrictions on fluctuations in real networks must be properly taken into account, with due regard for the variation of this contribution with deformation and with degree of cross-linking. Otherwise, the analysis of experimental data may yield results that are quite misleading. [Pg.1]

The experimental procedure for conducting phase solubility analysis is rather simple it consists of mixing increasing amounts of sample with a fixed volume of solvent and then determining the mass of sample that has dissolved after each addition. It is not necessary to exceed the solubility limit of the analyte species, but attainment of this condition makes it easier to recognize trend within the plots. An experimental protocol for phase solubility analyses is available [39]. The data are most commonly plotted with the system composition (total mass of sample added per gram solvent) on the x axis, and the solution composition (mass of solute actually dissolved per gram of solvent) on the y axis. [Pg.334]

Of course the structural changes represented in Table 1 are much more complex than the simple bond angle plus electronic effect analysis reveals. For example, solvation of the carbene may depend on the details of its structure, and solvation undoubtedly influences chemical and physical properties (Langan et al., 1984). Nonetheless, it is possible to develop a good grasp of the most important properties of aromatic carbenes from the simple considerations described above. Before we proceed to examine these relationships in more detail, the carbene properties of interest must be identified, and the experimental procedures available for measurement of these properties must be critically considered. [Pg.320]

Acid-catalyzed photoresist films acid diffusion, 35 acid generation, 303233/341 advantages, 28 catalytic chain length, 3435r development of classes of cationic photoinitiators, 28 experimental procedure, 35-36 generation mechanism from irradiation of triphenylsulfonium salts, 28-29 merocyanine dye method for acid analysis, 30,31/33/... [Pg.438]

The simultaneously recorded heating X-ray pattern of calcite in vacuum, the TMBA-curve and the mass spectrometric curve for C02 are shown in Fig. 60 and in Fig. 61. It can be seen that the decomposition of calcite in vacuum (10-4 torr) starts already at 420 °C and that it is complete at 660 °C. The equipment and experimental procedure for thermomolecular beam analysis has been discussed in detail in Section 2.4. [Pg.131]

ESR spectra for, 22 294, 301 as high-energy fuels, 18 2-4 hydrogenation course of, 18 6-8 equilibria, 18 7, 8 kinetic processes, 18 6, 7 experimental procedures, 18 19, 20 apparatus and methods, 18 20 materials, 18 20 mechanism of, 18 21-45 formation of isomeric decahydro-naphthalenes, 18 23-30 deuterogena-tion of - -octalin, 18 29 routes to trans isomers, 18 26-30 selectivity to trons-decalin, 18 24, 25 olefin intermediates, 18 30-45 dihydro-and hexahydronaphthalenes, 18 32, 33 analysis of products, 18 33 oc-tahydronaphthalenes, 18 34-45 analysis of products, 18 34 deu-... [Pg.151]

Several subunits of PA700 have not been identified universally (see Table 11.1). It is unclear if these discrepancies reflect authentic distinctions among species or whether they result from differences in experimental procedures and/or analysis. [Pg.291]

Environmental Pathways of Selected Chemicals in Freshwater Systems Part 1 Background and Experimental Procedures 821R98008 Evaluating Field Techniques for Collecting Effluent Samples for Trace Metals Analysis... [Pg.218]

Such an involvement of an amino acid side-chain ligand switch within each catalytic cycle was a novel proposal and as such needs to be scrutinized by a variety of experimental procedures as well as analysis in the context of information known for cytochrome cd nitrite reductase from another source (see later discussion). However, it is interesting to note that something similar has been proposed for the protocate-chuate 3,4-dioxygenase enzyme from Pseudomonas putida (15). On the other hand, bacterial cytochrome c peroxidase offers an example where ligand switching seemingly relates only to an activation phenomenon. [Pg.174]


See other pages where Experimental procedure analysis is mentioned: [Pg.45]    [Pg.79]    [Pg.45]    [Pg.79]    [Pg.6]    [Pg.705]    [Pg.92]    [Pg.367]    [Pg.139]    [Pg.24]    [Pg.555]    [Pg.74]    [Pg.18]    [Pg.395]    [Pg.863]    [Pg.32]    [Pg.290]    [Pg.504]    [Pg.167]    [Pg.156]    [Pg.86]    [Pg.255]    [Pg.172]    [Pg.686]    [Pg.65]    [Pg.375]   
See also in sourсe #XX -- [ Pg.65 , Pg.66 ]

See also in sourсe #XX -- [ Pg.289 ]




SEARCH



Analysis procedures

Experimental analysis

Experimental procedure compositional analysis

Experimental procedure instrumental analysis

Experimental procedure statistical analyses

Experimental procedure thermal analysis

Experimental procedures

Problems Related with Experimental Procedures and Data Analysis

© 2024 chempedia.info