Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excitation preparation process

While monomolecular collision-free predissociation excludes the preparation process from explicit consideration, themial imimolecular reactions involve collisional excitation as part of the unimolecular mechanism. The simple mechanism for a themial chemical reaction may be fomially decomposed into tliree (possibly reversible) steps (with rovibronically excited (CH NC) ) ... [Pg.765]

An analytical theory for the study of CC of radiationless transitions, and in particular, IC leading to dissociation, in molecules possessing overlapping resonances is developed in Ref. [33]. The method is applied to a model diatomic system. In contrast to previous studies, the control of a molecule that is allowed to decay during and after the preparation process is studied. This theory is used to derive the shape of the laser pulse that creates the specific excited wave packet that best enhances or suppresses the radiationless transitions process. The results in Ref. [33] show the importance of resonance overlap in the molecule in order to achieve efficient CC over radiationless transitions via laser excitation. Specifically, resonance overlap is proven to be crucial in order to alter interference contributions to the controlled observable, and hence to achieve efficient CC by varying the phase of the laser field. [Pg.360]

There can be a difference between the dissociation of polyatomic molecules and delayed ionization in the nature of the initial excitation. In ZEKE spectroscopy the state that is optically accessed (typically via an intermediate resonantly excited state) is a high Rydberg state, that is a state where most of the available energy is electronic excitation. Such a state is typically directly coupled to the continuum and can promptly ionize, unlike the typical preparation process in a unimolecular dissociation where the state initially accessed does not have much of its energy already along the reaction coordinate. It is quite possible however to observe delayed ionization in molecules that have acquired their energy by other means so that the difference, while certainly important is not one of principle. [Pg.632]

The laser excitation prepares the atoms in the lowest energy Stark state with m =2 in a chosen n-manifold (n=24 for example) (see Fig. 1-b). This excitation is itself a stepwise process involving three pulsed dye laser beams in resonance with the 2S-2P, 2P-3D and 3D-n, m =2, nx=0 transitions... [Pg.945]

Alternatively, the initial preparation process (e.g., collisional excitation, photoexcitation, or chemical activation) may not provide a random initial distribution. Then if the initial decay rate is rapid, i.e., faster than the rate of energy randomization, then its value may depend on the details of the initial... [Pg.60]

The validity of the physics that adopts the point of view of decaying states depends on the characteristics of the process of excitation-preparation. Specifically, one must assume that the duration of the pulse of excitation energy is much shorter than the lifetime of the unstable state. This implies that indeed the system is prepared in a nonstationary state at f = 0, i.e., in the localized state (T o/ Eo)/ while losing memory of the excitation step. For long-lived unstable states, this is expected to be achievable easily. For shortlived unstable atomic or molecular states, say of the order of 10 s, this is also achievable, in principle, via modern pump-probe techniques with time-delays in the range of a few femtoseconds or of a couple of hundreds of attoseconds. [Pg.181]

Modem photochemistry (IR, UV or VIS) is induced by coherent or incoherent radiative excitation processes [4, 5, 6 and 7]. The first step within a photochemical process is of course a preparation step within our conceptual framework, in which time-dependent states are generated that possibly show IVR. In an ideal scenario, energy from a laser would be deposited in a spatially localized, large amplitude vibrational motion of the reacting molecular system, which would then possibly lead to the cleavage of selected chemical bonds. This is basically the central idea behind the concepts for a mode selective chemistry , introduced in the late 1970s [127], and has continuously received much attention [10, 117. 122. 128. 129. 130. 131. 132. 133. 134... [Pg.1060]

Peroxyoxalate chemiluminescence is the most efficient nonenzymatic chemiluminescent reaction known. Quantum efficiencies as high as 22—27% have been reported for oxalate esters prepared from 2,4,6-trichlorophenol, 2,4-dinitrophenol, and 3-trif1uoromethy1-4-nitropheno1 (6,76,77) with the duorescers mbrene [517-51-1] (78,79) or 5,12-bis(phenylethynyl)naphthacene [18826-29-4] (79). For most reactions, however, a quantum efficiency of 4% or less is more common with many in the range of lO " to 10 ein/mol (80). The inefficiency in the chemiexcitation process undoubtedly arises from the transfer of energy of the activated peroxyoxalate to the duorescer. The inefficiency in the CIEEL sequence derives from multiple side reactions available to the reactive intermediates in competition with the excited state producing back-electron transfer process. [Pg.267]

The photochemistry of carbonyl compounds has been extensively studied, both in solution and in the gas phase. It is not surprising that there are major differences between the photochemical reactions in the two phases. In the gas phase, the energy transferred by excitation cannot be lost rapidly by collision, whereas in the liquid phase the excess energy is rapidly transferred to the solvent or to other components of the solution. Solution photochemistry will be emphasized here, since both mechanistic study and preparative applications of organic reactions usually involve solution processes. [Pg.753]

Here, we will describe experimental studies on capillary filling of CNTs. Because of the focus of this chapter, we have taken examples from the work in our own laboratory certainly we may have inadvertently ignored other exciting work from other laboratories in the world. Still the preparation of a sample of purified and filled CNTs have yet to be developed, so that the study of filled tubes have been and can only be performed by electron microscopy and associated techniques. We have tried to describe in detail all the steps involved in the procedure of capillary filling, such as CNT production, opening, filling and final thermal processing. [Pg.129]

How can such problems be counterbalanced Since a large capacitance of a semiconductor/electrolyte junction will not negatively affect the PMC transient measurement, a large area electrode (nanostructured materials) should be selected to decrease the effective excess charge carrier concentration (excess carriers per surface area) in the interface. PMC transient measurements have been performed at a sensitized nanostructured Ti02 liquidjunction solar cell.40 With a 10-ns laser pulse excitation, only the slow decay processes can be studied. The very fast rise time cannot be resolved, but this should be the aim of picosecond studies. Such experiments are being prepared in our laboratory, but using nanostructured... [Pg.505]

These results show the functional ability of GA to act as quencher of electronically excited states in food systems either as non-processed gum or spray-drying microencapsulated preparations. [Pg.16]

Studies of release of noradrenaline from sympathetic neurons provided the first convincing evidence that impulse (Ca +)-dependent release of any transmitter depended on vesicular exocytosis. Landmark studies carried out in the 1960s, using the perfused cat spleen preparation, showed that stimulation of the splenic nerve not only led to the detection of noradrenaline in the effluent perfusate but the vesicular enzyme, DpH, was also present. As mentioned above, this enzyme is found only within the noradrenaline storage vesicles and so its appearance along with noradrenaline indicated that both these factors were released from the vesicles. By contrast, there was no sign in the perfusate of any lactate dehydrogenase, an enzyme that is found only in the cell cytosol. The processes by which neuronal excitation increases transmitter release were described in Chapter 4. [Pg.172]


See other pages where Excitation preparation process is mentioned: [Pg.635]    [Pg.159]    [Pg.527]    [Pg.245]    [Pg.113]    [Pg.264]    [Pg.120]    [Pg.527]    [Pg.1555]    [Pg.506]    [Pg.218]    [Pg.348]    [Pg.224]    [Pg.162]    [Pg.11]    [Pg.245]    [Pg.1065]    [Pg.1075]    [Pg.1106]    [Pg.1628]    [Pg.100]    [Pg.107]    [Pg.392]    [Pg.128]    [Pg.39]    [Pg.2]    [Pg.1]    [Pg.420]    [Pg.617]    [Pg.14]    [Pg.305]    [Pg.203]    [Pg.72]    [Pg.83]    [Pg.377]    [Pg.227]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



Excitation process

Excitation, preparation

Preparation processes

© 2024 chempedia.info