Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exchange reaction current

Fig. 7-5. Tafel plot of reaction current io = exchange reaction current at equilibrium. Fig. 7-5. Tafel plot of reaction current io = exchange reaction current at equilibrium.
Integration of Eqn. 8-18 with respect to electron energy e to produce Eqn. 8-20 yields the exchange reaction current io ... [Pg.241]

Fig. 8-4. (a) Electron state density D in a metal electrode and in hydrated redox particles, (b) rate constant for electron ttmneling k, and (c) exchange reaction current electron transfer in eqiiilibrium with a redox reaction sl = lower edge of an allowed band of metal electrons. [From Gerischer, I960.]... [Pg.242]

In eqxiilibrium of electron transfer, the Fermi level of an electrode equals the Fermi level of the redox particles (eksc) = erredox)) the forward reaction current equals the backward reaction current, which both equal the exchange reaction current to. Further, the exchange current is the sum of the conduction band current, and the valence band current, ip,o (io = in.o + tp,o)- The exchange currents t o and ij, are given, respectively, by Eqns. 8-48 and 8—49 ... [Pg.254]

It follows from Eqn. 8-53 that the ratio of participation of the conduction band to the valence band in the exchange reaction current depends on the standard Fermi level of the redox electrons relative to the middle level in the band gap at the interface of semiconductor electrode. [Pg.255]

Figures 8-16 and 8-17 show the state density ZXe) and the exchange reaction current io( ) as functions of electron energy level in two different cases of the transfer reaction of redox electrons in equilibrium. In one case in which the Fermi level of redox electrons cnxEDax) is close to the conduction band edge (Fig. 8-16), the conduction band mechanism predominates over the valence band mechanism in reaction equilibrium because the Fermi level of electrode ensa (= nREDOK)) at the interface, which is also dose to the conduction band edge, generates a higher concentration of interfadal electrons in the conduction band than interfadal holes in the valence band. In the other case in which the Fermi level of redox electrons is dose to the valence band edge (Fig. 8-17), the valence band mechanism predominates over the conduction band mechanism because the valence band holes cue much more concentrated than the conduction band electrons at the electrode interface. Figures 8-16 and 8-17 show the state density ZXe) and the exchange reaction current io( ) as functions of electron energy level in two different cases of the transfer reaction of redox electrons in equilibrium. In one case in which the Fermi level of redox electrons cnxEDax) is close to the conduction band edge (Fig. 8-16), the conduction band mechanism predominates over the valence band mechanism in reaction equilibrium because the Fermi level of electrode ensa (= nREDOK)) at the interface, which is also dose to the conduction band edge, generates a higher concentration of interfadal electrons in the conduction band than interfadal holes in the valence band. In the other case in which the Fermi level of redox electrons is dose to the valence band edge (Fig. 8-17), the valence band mechanism predominates over the conduction band mechanism because the valence band holes cue much more concentrated than the conduction band electrons at the electrode interface.
Fig. 8-16. Electron state density in a semiconductor electrode and in hjrdrated redox partides, rate constant of electron tunneling, and exchange redox current in equilibrium with a redox electron transfer reaction for which the Fermi level is close to the conduction band edge eF(sc) = Fermi level of intrinsic semiconductor at the flat band potential 1. 0 (tp.o) = exchange reaction current of electrons (holes) (hvp)) - tunneling rate constant of electrons (holes). Fig. 8-16. Electron state density in a semiconductor electrode and in hjrdrated redox partides, rate constant of electron tunneling, and exchange redox current in equilibrium with a redox electron transfer reaction for which the Fermi level is close to the conduction band edge eF(sc) = Fermi level of intrinsic semiconductor at the flat band potential 1. 0 (tp.o) = exchange reaction current of electrons (holes) (hvp)) - tunneling rate constant of electrons (holes).
Next, we consider the anodic reaction current of redox electron transfer via the conduction band, of which the exchange reaction current has been shown in Fig. 8-16. Application of a slight anodic polarization to the electrode lowers the Fermi level of electrode fix>m the equilibrium level (Ep(sc)( n = 0) = eiiOTSDca)) to a polarized level (ep(8C)( n) = ep(REDox)- n)withoutchanging at the electrode interface the electron level relative to the redox electron level (the band edge level pinning) as shown in Fig. 8-20. As a result of anodic polarization, the concentration of interfacial electrons, n, in the conduction band decreases, and the concentration of interfadal holes, Pm, in the valence band increases. Thus, the cathodic transfer current of redox electrons, in, via the conduction band decreases (with the anodic electron im ection current, ii, being constant), and the anodic transfer current of redox holes, (p, via the valence band increases (with the cathodic hole injection... [Pg.259]

RBDox), an anodic potential-independent current (dashed line) or a cathodic potential-independent ourent (solid line) equivalent to the exchange reaction current occurs near the equilibrimn redox potential. [Pg.269]

Fig. 8-39. Electron state density in an electrode metal, Du, a semiconductor film, Dt, hydrated redox particles, Dredox, and exchange reaction current of redox electrons, t., in electron transfer equilibrium M = exchange current at a bare metal electrode, M/F= exchange current at a thin-film-covered metal electrode. Fig. 8-39. Electron state density in an electrode metal, Du, a semiconductor film, Dt, hydrated redox particles, Dredox, and exchange reaction current of redox electrons, t., in electron transfer equilibrium M = exchange current at a bare metal electrode, M/F= exchange current at a thin-film-covered metal electrode.
Fig. 9-3. Polarization curves estimated for a simple electrode reaction of metallic ion transfer i = reaction current to - exchange reaction current in reaction equilibrium = symmetric factor (0 < 3 < 1). Fig. 9-3. Polarization curves estimated for a simple electrode reaction of metallic ion transfer i = reaction current to - exchange reaction current in reaction equilibrium = symmetric factor (0 < 3 < 1).
Determining the cross-exchange reaction current can yield some useful information. For a system under SR kinetic control, mediation takes place in a thin reaction layer adjacent to the film/solution... [Pg.305]

Fig. 2a-c. Kinetic zone diagram for the catalysis at redox modified electrodes a. The kinetic zones are characterized by capital letters R control by rate of mediation reaction, S control by rate of subtrate diffusion, E control by electron diffusion rate, combinations are mixed and borderline cases b. The kinetic parameters on the axes are given in the form of characteristic currents i, current due to exchange reaction, ig current due to electron diffusion, iji current due to substrate diffusion c. The signpost on the left indicates how a position in the diagram will move on changing experimental parameters c% bulk concentration of substrate c, Cq catalyst concentration in the film Dj, Dg diffusion coefficients of substrate and electrons k, rate constant of exchange reaction k distribution coefficient of substrate between film and solution d> film thickness (from ref. [Pg.64]

The reaction amounts to a vectorically directed current in the sense of occurring down a concentration gradient of reduced poly-[Fe(II)TPP] sites emanating from the reducing electrode/polymer interface. The magnitude of the current clearly conveys information about the rate of the poly-[Fe(III)TPP(X)] - poly-[Fe(II)TPP] self exchange reaction. [Pg.414]

Exchange reactions between bulk and adsorbed substances can be studied by on-line mass spectroscopy and isotope labeling. In this section the results on the interaction of methanol and carbon monoxide in solution with adsorbed methanol and carbon monoxide on platinum are reported [72], A flow cell for on-line MS measurements (Fig. 1.2) was used. 13C-labeled methanol was absorbed until the Pt surface became saturated. After solution exchange with base electrolyte a potential scan was applied. Parallel to the current-potential curve the mass intensity-potential for 13C02 was monitored. Both curves are given in Fig. 3.1a,b. A second scan was always taken to check the absence of bulk substances. [Pg.154]

The dispersion and solid-state ion exchange of ZnCl2 on to the surface of NaY zeolite by use of microwave irradiation [17] and modification of the surface of active carbon as catalyst support by means of microwave induced treatment have also been reported [18]. The ion-exchange reactions of both cationic (montmorillonites) and anionic clays (layered double hydroxides) were greatly accelerated under conditions of microwave heating compared with other techniques currently available [19.]... [Pg.349]

In equilibrium of redox reactions, the Fermi level of the electrode equals the Fermi level of the redox particles (ckm) = panodic reaction current equals, but in the opposite direction, the cathodic reaction current (io = io = io). It follows from the principle of micro-reversibility that the forward and backward reaction currents equal each other not only as a whole current but also as a differential current at constant energy level e io(e) = tS(e) = io(e). Referring to Eqns. 8-7 and 8-8, we then obtain the exchange reaction ciurent as shown in Eqn. 8-18 ... [Pg.240]

In addition to imprinted acid-base catalysts [49-55], attempts to imprint metal complexes have been reported and constitute the current state of the art [46, 47]. In most cases of metal-complex imprinting, ligands of the complexes are used as template molecules, which aims to create a cavity near the metal site. Molecular imprinting of metal complexes exhibits several notable features (i) attachment of metal complex on robust supports (ii) surrounding of the metal complex by polymer matrix and (iii) production of a shape selective cavity on the metal site. Metal complexes thus imprinted have been appHed to molecular recognition [56, 57], reactive complex stabilization [58, 59], Hgand exchange reaction [60] and catalysis [61-70]. [Pg.392]

Catalysts and their effects on chemical reactions aid in efficiency, effectiveness and selectivity. A recent example of current research is redox and ligand exchange reactions of the oxygenation catalyst (N,N -bis(salicylidene)ethylenediaminato)co-balt(II), Co(SALEN)2 (below), and its one-electron oxidation product, Co(salen) 2-These were investigated in DMF, pyridine, and mixtures of these solvents. Solvent effects on the potentials, the thermodynamics of cross reactions, and the distribution of Co(II) and Co(III) species as a function of the solvent composition are important considerations (Eichhorn, 1997). The results in these solvents should be compared with other work with catalysts using more environmentally benign media (Collins et al., 1998). [Pg.28]

Fig. 7.69. In a multistep electron-exchange reaction, each step produces its individual current density. At a steady state, all these currents must be equal. Fig. 7.69. In a multistep electron-exchange reaction, each step produces its individual current density. At a steady state, all these currents must be equal.
At bHr Group (Phillips et al. (78)), tests performed on fast exothermic reactions have shown that energy savings up to 40% could be achieved and that the amount of by-product was significantly reduced. Extension of this work to commercial compact heat exchangers is currently being considered the first results indicate that chemical heat exchangers (CHEs) could be suitable as continuous chemical reactors. [Pg.169]


See other pages where Exchange reaction current is mentioned: [Pg.240]    [Pg.241]    [Pg.242]    [Pg.254]    [Pg.254]    [Pg.392]    [Pg.392]    [Pg.15]    [Pg.240]    [Pg.241]    [Pg.242]    [Pg.254]    [Pg.254]    [Pg.392]    [Pg.392]    [Pg.15]    [Pg.2718]    [Pg.53]    [Pg.375]    [Pg.1006]    [Pg.326]    [Pg.653]    [Pg.410]    [Pg.28]    [Pg.128]    [Pg.124]    [Pg.225]    [Pg.264]    [Pg.212]    [Pg.777]    [Pg.427]    [Pg.1007]    [Pg.157]   
See also in sourсe #XX -- [ Pg.240 , Pg.254 ]




SEARCH



Exchange current

Reaction current

© 2024 chempedia.info