Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Excess solubilization

The optimum procedure for preparing the butyllithium-TED (1 1) complex was to add the TED solid directly to 15-20% n-butyllithium in hexane at 40°-50°C. (When the TED was added near room temperature, a gel stage formed.) The exotherm from the solution was moderate, and the temperature was allowed to rise to reflux. Only a 20% excess of toluene was added because large excesses solubilized the product. The yield of the dried, yellow crystals was from 82 to 90%. When the hexane solution was evaporated without filtration to dryness, a yield of 96% was obtained. No side products were observed. The crystals were very sensitive to air they charred and smoked, but no flame was observed in laboratory quantities. The crystals were stable for at least five years at room temperature when protected from air and moisture. The TED could not be sublimed away (only 0.2% weight loss) from the 1 1 complex crystals at 0.14 torr before decomposition occurred at 125°C. [Pg.40]

Evidence of excess solubilization and the associated curvature variation... [Pg.178]

The simple wedge model also explains the observed effect of oil on the solubilization of testosterone propionate (50). In this case, the excess solubilization... [Pg.180]

Testard, F., Zemb, Th. and strey, R., Excess solubilization of lindane in bicontinuous microemulsions, Progr. Colloid Polym. ScL, 105, 332-339 (1997). [Pg.187]

In the first method a secondary acetylenic bromide is warmed in THF with an equivalent amount of copper(I) cyanide. We found that a small amount of anhydrous lithium bromide is necessary to effect solubilization of the copper cyanide. Primary acetylenic bromides, RCECCH Br, under these conditions afford mainly the acetylenic nitriles, RCsCCHjCsN (see Chapter VIII). The aqueous procedure for the allenic nitriles is more attractive, in our opinion, because only a catalytic amount of copper cyanide is required the reaction of the acetylenic bromide with the KClV.CuCN complex is faster than the reaction with KCN. Excellent yields of allenic nitriles can be obtained if the potassium cyanide is added at a moderate rate during the reaction. Excess of KCN has to be avoided, as it causes resinifi-cation of the allenic nitrile. In the case of propargyl bromide 1,1-substitution may also occur, but the propargyl cyanide immediately isomerizes under the influence of the potassium cyanide. [Pg.155]

However, often the identities (aqueous, oleic, or microemulsion) of the layers can be deduced rehably by systematic changes of composition or temperature. Thus, without knowing the actual compositions for some amphiphile and oil of poiats T, Af, and B ia Figure 1, an experimentaUst might prepare a series of samples of constant amphiphile concentration and different oil—water ratios, then find that these samples formed the series (a) 1 phase, (b) 2 phases, (c) 3 phases, (d) 2 phases, (e) 1 phase as the oil—water ratio iacreased. As illustrated by Figure 1, it is likely that this sequence of samples constituted (a) a "water-continuous" microemulsion (of normal micelles with solubilized oil), (b) an upper-phase microemulsion ia equiUbrium with an excess aqueous phase, ( ) a middle-phase microemulsion with conjugate top and bottom phases, (d) a lower-phase microemulsion ia equiUbrium with excess oleic phase, and (e) an oA-continuous microemulsion (perhaps containing iaverted micelles with water cores). [Pg.148]

Only three simple silver salts, ie, the fluoride, nitrate, and perchlorate, are soluble to the extent of at least one mole per Hter. Silver acetate, chlorate, nitrite, and sulfate are considered to be moderately soluble. AH other silver salts are, at most, spatingly soluble the sulfide is one of the most iasoluble salts known. SHver(I) also forms stable complexes with excess ammonia, cyanide, thiosulfate, and the haUdes. Complex formation often results ia the solubilization of otherwise iasoluble salts. Silver bromide and iodide are colored, although the respective ions are colorless. This is considered to be evidence of the partially covalent nature of these salts. [Pg.88]

Sulfur Complexes. Silver compounds other than sulfide dissolve in excess thiosulfate. Stable silver complexes are also formed with thiourea. Except for the cyanide complexes, these sulfur complexes of silver are the most stable. In photography, solutions of sodium or ammonium thiosulfate fixers are used to solubilize silver hahdes present in processed photographic emulsions. When insoluble silver thiosulfate is dissolved in excess thiosulfate, various silver complexes form. At low thiosulfate concentrations, the principal silver species is Ag2(S203) 2j high thiosulfate concentrations, species such as Ag2(S203) 3 are present. Silver sulfide dissolves in alkaline sulfide solutions to form complex ions such as Ag(S 2 Ag(HS) 4. These ions are... [Pg.90]

Soil Leaching. Soil leaching or acid extraction uses acid to solubilize metals for removal from soils, a technique akin to that ia the mining industry. After extraction with an acid such as hydrochloric, sulfuric, or nitric, the soil is separated from the acid, rinsed with water to remove excess acid and metals, dewatered, and neutralized. The acid is regenerated and recycled back to the process. The extracted metals can be precipitated and recovered. [Pg.173]

A chelant—polymer combination is an effective approach to controlling iron oxide. Adequate chelant is fed to complex hardness and soluble iron, with a slight excess to solubilize iron contamination. Polymers are then added to condition and disperse any remaining iron oxide contamination. [Pg.263]

Acceleration modifies the surface layer of palladium nuclei, and stannous and stannic hydrous oxides and oxychlorides. Any acid or alkaline solution in which excess tin is appreciably soluble and catalytic palladium nuclei become exposed may be used. The activation or acceleration step is needed to remove excess tin from the catalyzed surface, which would inhibit electroless plating. This step also exposes the active palladium sites and removes loose palladium that can destabilize the bath. Accelerators can be any acidic or alkaline solution that solubilizes excess tin. [Pg.110]

Dissolution. Plutonium is solubilized in nitric acid solutions at Rocky Flats. The feed material consists of oxide, metal and glass, dissolution heels, incinerator ash and sand, slag, and crucible from reduction operations. The residues are contacted with 12M HNO3 containing CaF2 or HF to hasten dissolution. Following dissolution, aluminum nitrate is added to these solutions to complex the excess fluoride ion. [Pg.371]

The polymerization of l,4-bis(halomethyl)benzenes to PPVs in the presence of a large excess of potassium f-butoxide is referred as the Gilch route [81]. The method was first described for the synthesis of unsubstituted PPV 60, but -unfortunately - this route produces the PPV as an intractable, insoluble powder. However, the adaptation of the Gilch route to the polymerization of l,4-bis(halo-methyl)benzenes possessing solubilizing side groups gives access to soluble PPV materials. [Pg.195]

Carboxyl redution. A sample of pennethylated PI (5 mg) was carboxyl-reduced by a modification of the method described by Lindberg and Lbnngren [9], as follows. The methylated fraction was solubilized and added a mixture of LiAlH4 (25 mg) in THF (5 mL) at 20 °C for 4 h. and refluxed during 1 h. The excess of reagent was destroyed with ethyl acetate (5-6 drops) and water (10 drops) and the pH of the mixture adjusted to neutrality with acetic acid. The insoluble residue was removed by centrifugation. The reduced fi action was precipitated with EtOH. The reaction was monitored by l.r. specroscopy. Hydrolysis products were analysed by GC-MS as methyl alditol acetates... [Pg.553]

Calculated monomer proportions In solubilized copolymer at each conversion level are compared to unreacted monomer proportions in Table I. At low conversion levels, T3-T5, the copolymer appeared to be rich In methylacrylate. This anomaly was not detected In unreacted monomer measurements, possibly because the amount of copolymer was small relative to the large excess of unreacted monomers. As conversion Increased (T5-Tj 4> calculated copolymer composition approached the 75/25 AN/MA target and averaged exactly 75/25. [Pg.83]

There are different ways in which the nanoparticles prepared by ME-technique can be used in catalysis. The use of ME per se [16,17] implies the addition of extra components to the catalytic reaction mixture (hydrocarbon, water, surfactant, excess of a metal reducing agent). This leads to a considerable increase of the reaction volume, and a catal5fiic reaction may be affected by the presence of ME via the medium and solubilization effects. The complex composition of ME does not allow performing solvent-free reactions. [Pg.293]

Especially in dicotyledonous plant species such as tomato, chickpea, and white lupin (82,111), with a high cation/anion uptake ratio, PEPC-mediated biosynthesis of carboxylates may also be linked to excessive net uptake of cations due to inhibition of uptake and assimilation of nitrate under P-deficient conditions (Fig. 5) (17,111,115). Excess uptake of cations is balanced by enhanced net re-lea,se of protons (82,111,116), provided by increased bio.synthesis of organic acids via PEPC as a constituent of the intracellular pH-stat mechanism (117). In these plants, P deficiency-mediated proton extrusion leads to rhizosphere acidification, which can contribute to the. solubilization of acid soluble Ca phosphates in calcareous soils (Fig. 5) (34,118,119). In some species (e.g., chickpea, white lupin, oil-seed rape, buckwheat), the enhanced net release of protons is associated with increased exudation of carboxylates, whereas in tomato, carboxylate exudation was negligible despite intense proton extrusion (82,120). [Pg.58]

Depicted in Fig. 2, microemulsion-based liquid liquid extraction (LLE) of biomolecules consists of the contacting of a biomolecule-containing aqueous solution with a surfactant-containing lipophilic phase. Upon contact, some of the water and biomolecules will transfer to the organic phase, depending on the phase equilibrium position, resulting in a biphasic Winsor II system (w/o-ME phase in equilibrium with an excess aqueous phase). Besides serving as a means to solubilize biomolecules in w/o-MEs, LLE has been frequently used to isolate and separate amino acids, peptides and proteins [4, and references therein]. In addition, LLE has recently been employed to isolate vitamins, antibiotics, and nucleotides [6,19,40,77-79]. Industrially relevant applications of LLE are listed in Table 2 [14,15,20,80-90]. [Pg.478]

Two situations are found in leaching. In the first, the solvent available is more than sufficient to solubilize all the solute, and, at equilibrium, all the solute is in solution. There are, then, two phases, the solid and the solution. The number of components is 3, and F = 3. The variables are temperature, pressure, and concentration of the solution. All are independently variable. In the second case, the solvent available is insufficient to solubilize all the solute, and the excess solute remains as a solid phase at equilibrium. Then the number of phases is 3, and F = 2. The variables are pressure, temperature and concentration of the saturated solution. If the pressure is fixed, the concentration depends on the temperature. This relationship is the ordinary solubility curve. [Pg.291]

The sulfuric acid needed to solubilize copper from chalcocite is balanced by the acid recovered from the copper electrowinning step this acid is recycled to the heaps. The overall acid requirements for the process are, therefore, dependent on the acid consumption by the gangue minerals in the ore and the acid production by pyrite oxidation. If the pyrite associated with the ore is significant and the acid consumption by the ore is low, excess sulfuric acid can be neutralized by lime. [Pg.499]

The literature survey in this section suggests that the ideal in vitro permeability assay would have pH 6.0 and 7.4 in the donor wells, with pH 7.4 in the acceptor wells. (Such a two-pH combination could differentiate acids from bases and non-ionizables by the differences between the two Pe values.) Furthermore, the acceptor side would have 3% wt/vol BSA to maintain a sink condition (or some sinkforming equivalent). The donor side may benefit from having a bile acid (i.e., taurocholic or glycocholic, 5-15 mM), to solubilize the most lipophilic sample molecules. The ideal lipid barrier would have a composition similar to those in Table 3.1, with the membrane possessing a substantial negative charge (mainly from PI). Excessive DMSO/other co-solvents would be best avoided, due to their unpredictable effects. [Pg.56]

Add a 5-fold molar excess of 5-IAF (Thermo Fisher) over the amount of DTT present. The fluorescent probe may be solubilized in DMF prior to addition of a small aliquot to the reaction mixture. Do not exceed 10 percent DMF in the final aqueous solution. [Pg.408]


See other pages where Excess solubilization is mentioned: [Pg.2592]    [Pg.248]    [Pg.155]    [Pg.391]    [Pg.470]    [Pg.2205]    [Pg.316]    [Pg.256]    [Pg.130]    [Pg.116]    [Pg.4]    [Pg.224]    [Pg.477]    [Pg.564]    [Pg.249]    [Pg.63]    [Pg.175]    [Pg.232]    [Pg.137]    [Pg.240]    [Pg.149]    [Pg.281]    [Pg.763]    [Pg.164]    [Pg.152]   
See also in sourсe #XX -- [ Pg.2 , Pg.178 , Pg.179 ]

See also in sourсe #XX -- [ Pg.2 , Pg.178 , Pg.179 ]




SEARCH



© 2024 chempedia.info