Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Example Reaction System

In the following chapters, an example reaction system will be used for illustrating purposes. In order to focus on thermal aspects of reactor safety, no explicit chemistry will be used, but a general reaction scheme is used instead  [Pg.112]

The first reaction is the synthesis reaction, a single bimolecular second-order reaction with the rate equation  [Pg.113]

The second reaction is a first-order decomposition reaction of the product P, with a rate equation  [Pg.113]

This reaction scheme is used in two variants, a fast reaction called the addition reaction and a slow synthesis reaction called the substitution reaction. The thermal and kinetic data are summarized in Table 5.1. The decomposition reaction presents a heat release rate of 10 W kg 1 at 150 °C. Together with the activation energy, this heat release rate allows calculating the time to explosion ( I M R id) as a function of temperature. The amounts of reactants to be used in discontinuous operations are summarized in Table 5.2. The solvent used has a boiling point of 140 °C at atmospheric pressure. [Pg.113]

The reactor to be used is a 4m3 stainless steel stirred tank following DIN-Standards [20]. It is equipped with a indirect heating cooling system using a monofluid (water-diethylene glycole mixture) circulating in a heat exchanger [Pg.113]


These routines come with detailed instructions of use along with data examples of diverse application (chromatographic examples, reaction systems, etc.). Our research group offers free support for the users of this software and appreciates suggestions about possible improvements in the routines and in the contents of the Web page. [Pg.467]

An example of a parallel reaction system occurs in the production of ethylene oxide ... [Pg.19]

An example of a series reaction system is the production of formaldehyde from methanol ... [Pg.20]

An example of such recychng in a parallel reaction system is in the Oxo process for the production of C4 alcohols. Propylene and synthesis gas (a mixture of carbon monoxide and hydrogen) are first reacted to ra- and isobutyraldehydes using a cobalt-based catalyst. Two parallel reactions occur ... [Pg.38]

If the reaction involves more than one feed, it is not necessary to operate with the same low conversion on all the feeds. Using an excess of one of the feeds enables operation with a relatively high conversion of other feed material, and still inhibits series reactions. Consider again the series reaction system from Example 2.3 ... [Pg.38]

Another way to keep the concentration of PRODUCT low is to remove the product as the reaction progresses, e.g., by intermediate separation followed by further reaction. For example, in a reaction system such as Eq. (2.18), intermediate separation of the PRODUCT followed by further reaction maintains a low concentration of PRODUCT as the reaction progresses. Such intermediate separation is most appropriate when separation of the product from the reactants is straightforward. [Pg.39]

The practical goal of EPR is to measure a stationary or time-dependent EPR signal of the species under scrutiny and subsequently to detemiine magnetic interactions that govern the shape and dynamics of the EPR response of the spin system. The infomiation obtained from a thorough analysis of the EPR signal, however, may comprise not only the parameters enlisted in the previous chapter but also a wide range of other physical parameters, for example reaction rates or orientation order parameters. [Pg.1563]

When the perturbation is small, the reaction system is always close to equilibrium. Therefore, the relaxation follows generalized first-order kinetics, even if bi- or trimolecular steps are involved (see chapter A3.41. Take, for example, the reversible bimolecular step... [Pg.2118]

This is an example of a Mobius reaction system—a node along the reaction coordinate is introduced by the placement of a phase inverting orbital. As in the H - - H2 system, a single spin-pair exchange takes place. Thus, the reaction is phase preserving. Mobius reaction systems are quite common when p orbitals (or hybrid orbitals containing p orbitals) participate in the reaction, as further discussed in Section ni.B.2. [Pg.346]

Special isotope ratio mass spectrometers are needed to measure the small variations, which are too small to be read off from a spectrum obtained on a routine mass spectrometer. Ratios of isotopes measured very accurately (usually as 0/00, i.e., as parts per 1000 [mil] rather than parts per 100 [percent]) give information on, for example, reaction mechanisms, dating of historic samples, or testing for drugs in metabolic systems. Such uses are illustrated in the main text. [Pg.425]

Detoxifica.tlon. Detoxification systems in the human body often involve reactions that utilize sulfur-containing compounds. For example, reactions in which sulfate esters of potentially toxic compounds are formed, rendering these less toxic or nontoxic, are common as are acetylation reactions involving acetyl—SCoA (45). Another important compound is. Vadenosylmethionine [29908-03-0] (SAM), the active form of methionine. SAM acts as a methylating agent, eg, in detoxification reactions such as the methylation of pyridine derivatives, and in the formation of choline (qv), creatine [60-27-5] carnitine [461-06-3] and epinephrine [329-65-7] (50). [Pg.379]

The in situ process is simpler because it requires less material handling (35) however, this process has been used only for resole resins. When phenol is used, the reaction system is initially one-phase alkylated phenols and bisphenol A present special problems. As the reaction with formaldehyde progresses at 80—100°C, the resin becomes water-insoluble and phase separation takes place. Catalysts such as hexa produce an early phase separation, whereas NaOH-based resins retain water solubiUty to a higher molecular weight. If the reaction medium contains a protective coUoid at phase separation, a resin-in-water dispersion forms. Alternatively, the protective coUoid can be added later in the reaction sequence, in which case the reaction mass may temporarily be a water-in-resin dispersion. The protective coUoid serves to assist particle formation and stabUizes the final particles against coalescence. Some examples of protective coUoids are poly(vinyl alcohol), gum arabic, and hydroxyethjlceUulose. [Pg.298]

Myrcene with its conjugated diene system readily undergoes Diels-Alder reactions with a number of dienophiles. For example, reaction with 3-meth.5i-3-pentene-2-one with a catalytic amount of AlCl gives an intermediate monocyclic ketone, which when cyclized with 85% phosphoric acid produces the bicycHc ketone known as Iso E Super [54464-57-2] (49). The product is useful in providing sandalwood-like and cedarwood-like fragrance ingredients (91). [Pg.417]

The number of independent rate equations is the same as the number of independent stoichiometric relations. In the present example. Reactions (1) and (2) are reversible reactions and are not independent. Accordingly, C,. and C, for example, can be eliminated from the equations for and which then become an integrable system. Usually only systems of linear differential equations with constant coefficients are solvable analytically. [Pg.684]

Each chapter starts with a description of the topic covered in the chapter. This is followed by a short example highlighting a reported incident involving a batch reaction system. The case study is followed by a listing of key issues and process safety practices unique to the topic. The issues and concerns presented in this book, as well as potential design solutions and sources of additional information are presented in the tables. This format concisely conveys the necessary and relevant information in a familiar and convenient format. The organization of the tables is described below. [Pg.3]

An achiral reagent cannot distinguish between these two faces. In a complex with a chiral reagent, however, the two (phantom ligand) electron pairs are in different (enantiotopic) environments. The two complexes are therefore diastereomeric and are formed and react at different rates. Two reaction systems that have been used successfully for enantioselective formation of sulfoxides are illustrated below. In the first example, the Ti(0-i-Pr)4-f-BuOOH-diethyl tartrate reagent is chiral by virtue of the presence of the chiral tartrate ester in the reactive complex. With simple aryl methyl sulfides, up to 90% enantiomeric purity of the product is obtained. [Pg.108]

Use continuous reactors if possible. It is usually easier to control continuous reactors than batch reactors. If a batch reaction system is required, minimize the amount of unreacted hazardous materials in the reactor. Figures 12-40 and 12-41 show typical examples. [Pg.984]

Use of the isolation or pseudo-order technique. This approach is discussed in Chapter 2, where it was shown how a second-order reaction could be converted to a pseudo-first-order reaction by maintaining one of the reactant concentrations at an essentially eonstant level. The same method may be usefully applied to eomplex reactions. In this way, for example. Scheme XI can be studied under conditions such that it functions as Scheme IX. A corollary that must be kept in mind is that a reaction system that is observed to behave in accordance with (as an example) Scheme IX may actually be more complex than it appears to be, if an unsuspected reactant is present under pseudo-order conditions. [Pg.78]

Obviously for this method to work the ratio T1IT2 must be appreciably smaller than unity. Provided this condition is met, this method is a simple and reliable way to test for an isokinetic relationship or to detect deviations from such a relationship. Exner shows examples of systems plotted both as log 2 vs. log and as AH vs. A5, demonstrating the inadequacy of the latter plot. Exner has also developed a statistical analysis of the Petersen method this analysis yields p and an uncertainty estimate of p. Exner has applied his statistical methods to 100 reaction series, finding that 78 of them follow approximately valid isokinetic relationships. [Pg.370]

The Fischer indole synthesis is of wide scope, and can be used for the preparation of substituted indoles and related systems. For example reaction of the phenylhydrazone 9, derived from cyclohexanone, yields the tetrahydrocar-bazole 10 ... [Pg.115]

Finally, a special example of transition metal-catalyzed hydrogenation in which the ionic liquid used does not provide a permanent biphasic reaction system should be mentioned. The hydrogenation of 2-butyne-l,4-diol, reported by Dyson et al., made use of an ionic liquid/water system that underwent a reversible two-... [Pg.231]

Multicomponent distillations are more complicated than binary systems due primarily to the actual or potential involvement or interaction of one or more components of the multicomponent system on other components of the mixture. These interactions may be in the form of vapor-liquid equilibriums such as azeotrope formation, or chemical reaction, etc., any of which may affect the activity relations, and hence deviations from ideal relationships. For example, some systems are known to have two azeotrope combinations in the distillation column. Sometimes these, one or all, can be broken or changed in the vapor pressure relationships by addition of a third chemical or hydrocarbon. [Pg.68]

Another example of the shape similarity effect on molecular recognition involves the similarity between the structures of the binding sites. Investigation was made for four reaction systems I-IV each consisting of a 1 1 mixture of thiols HS—X and HS—Y... [Pg.97]

Table 15.4 lists formation constants of complex ions. In each case, Kt applies to the formation of the complex by a reaction of the type just cited. Notice that for most complex ions listed, Kf is a large number, 10s or greater. This means that equilibrium considerations strongly favor complex formation. Consider, for example, the system... [Pg.422]

The polyelectrolyte catalysis of chemical reactions involving ionic species has been the subject of extensive investigations since the pioneering studies of Morawetz et al. [12] and Ise et al. [13-17]. The catalytic effect or the ability of poly-electrolytes to enhance or retard reaction rates is mainly due to concentration or exclusion of either or both of the ionic reactants by the polyions added to the reaction systems. For example, the chemical reaction between ionic species carrying the same charge is enhanced in the presence of polyions carrying the opposite charge. This enhancement can be attributed to an increase in the local concentration... [Pg.52]

A kinetic description of a heterogeneous catalytic reaction will in most cases be different when the reaction proceeds simultaneously with other reactions in a complex system, compared with the case where its kinetics was studied separately. The most important is the effect in the case where the reactions concerned take place on the same sites of the surface of a catalyst. Let us take, for example, the system of competitive reactions... [Pg.9]

The dediazoniation of aromatic diazonium ions has been found to involve a variety of mechanisms. Three typical examples should suffice to show that seemingly slight modifications in the reaction system can lead to entirely different reaction products these suggest fundamentally different dediazoniation mechanisms ... [Pg.162]


See other pages where Example Reaction System is mentioned: [Pg.112]    [Pg.318]    [Pg.112]    [Pg.318]    [Pg.279]    [Pg.731]    [Pg.2118]    [Pg.2317]    [Pg.378]    [Pg.140]    [Pg.640]    [Pg.440]    [Pg.13]    [Pg.70]    [Pg.226]    [Pg.79]    [Pg.109]    [Pg.122]    [Pg.39]    [Pg.198]    [Pg.198]    [Pg.89]    [Pg.132]    [Pg.470]   


SEARCH



Examples reaction

Worked example of relief system sizing for a tempered hybrid runaway reaction

Worked example of.Relief system sizing for a gassy runaway reaction

© 2024 chempedia.info